This paper focuses on developing a robust inference procedure for the linear quantile regression estimator in the context of dyadic data structures. We investigate the asymptotic distribution of the quantile regression estimator under dependency structures arising from shared nodes in both undirected and directed networks. We establish consistency results for the covariance matrix estimator and provide asymptotic distributions for the associated t-statistic and Wald statistic, particularly in both univariate and joint hypothesis testing scenarios. To showcase the effectiveness of our proposed method, we present numerical simulations and an empirical application using international trade data. Our results demonstrate the excellent performance of the robust t-statistic and Wald statistic in quantile regression inference with dyadic data.
机构:
Univ Calif Los Angeles, Dept Stat, 520 Portola Plaza, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, 520 Portola Plaza, Los Angeles, CA 90095 USA
Padilla, Oscar Hernan Madrid
Chatterjee, Sabyasachi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Stat, 725 S Wright St M-C 374, Champaign, IL 61820 USAUniv Calif Los Angeles, Dept Stat, 520 Portola Plaza, Los Angeles, CA 90095 USA
机构:
Beijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
Shi, Hongwei
Yang, Weichao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
Yang, Weichao
Zhou, Niwen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Ctr Stat & Data Sci, 18 Jinfeng Rd, Zhuhai 519087, Guangdong, Peoples R ChinaBeijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
Zhou, Niwen
Guo, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Stat, 19 Xinjiekouwai St, Beijing 100875, Peoples R China