Bayesian Federated Estimation of Causal Effects from Observational Data

被引:0
作者
Thanh Vinh Vo [1 ]
Lee, Young [2 ]
Trong Nghia Hoang [3 ]
Leong, Tze-Yun [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180 | 2022年 / 180卷
基金
新加坡国家研究基金会;
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Bayesian framework for estimating causal effects from federated observational data sources. Bayesian causal inference is an important approach to learning the distribution of the causal estimands and understanding the uncertainty of causal effects. Our framework estimates the posterior distributions of the causal effects to compute the higher-order statistics that capture the uncertainty. We integrate local causal effects from different data sources without centralizing them. We then estimate the treatment effects from observational data using a non-parametric reformulation of the classical potential outcomes framework. We model the potential outcomes as a random function distributed by Gaussian processes, with defining parameters that can be efficiently learned from multiple data sources. Our method avoids exchanging raw data among the sources, thus contributing towards privacy-preserving causal learning. The promise of our approach is demonstrated through a set of simulated and real-world examples.
引用
收藏
页码:2024 / 2034
页数:11
相关论文
共 50 条
  • [41] Estimating Causal Effects of Interventions on Early-life Environmental Exposures Using Observational Data
    Smith, Tyler J. S.
    Keil, Alexander P.
    Buckley, Jessie P.
    CURRENT ENVIRONMENTAL HEALTH REPORTS, 2023, 10 (01) : 12 - 21
  • [42] Doubly Robust Estimation of Causal Effects
    Funk, Michele Jonsson
    Westreich, Daniel
    Wiesen, Chris
    Stuermer, Til
    Brookhart, M. Alan
    Davidian, Marie
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (07) : 761 - 767
  • [43] Bayesian estimation of the random coefficients logit from aggregate count data
    Zenetti, German
    Otter, Thomas
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2014, 12 (01): : 43 - 84
  • [44] Optimal Bayesian Reliability Estimation from Progressively Censored Multimodal Data
    Aslam, Muhammad
    Feroze, Navid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2407 - 2422
  • [45] From Observational Studies to Causal Rule Mining
    Li, Jiuyong
    Thuc Duy Le
    Liu, Lin
    Liu, Jixue
    Jin, Zhou
    Sun, Bingyu
    Ma, Saisai
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 7 (02)
  • [46] Propensity scores in the design of observational studies for causal effects
    Rosenbaum, P. R.
    Rubin, D. B.
    BIOMETRIKA, 2023, 110 (01) : 1 - 13
  • [47] Communication-Efficient Distributed Estimation of Causal Effects With High-Dimensional Data
    Wang, Xiaohan
    Tong, Jiayi
    Peng, Sida
    Chen, Yong
    Ning, Yang
    STAT, 2024, 13 (03):
  • [48] Handling missing data when estimating causal effects with targeted maximum likelihood estimation
    Dashti, S. Ghazaleh
    Lee, Katherine J.
    Simpson, Julie A.
    White, Ian R.
    Carlin, John B.
    Moreno-Betancur, Margarita
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2024, 193 (07) : 1019 - 1030
  • [49] Identifiability and Estimation of Causal Effects in Randomized Trials with Noncompliance and Completely Nonignorable Missing Data
    Chen, Hua
    Geng, Zhi
    Zhou, Xiao-Hua
    BIOMETRICS, 2009, 65 (03) : 675 - 682
  • [50] Toward Unique and Unbiased Causal Effect Estimation From Data With Hidden Variables
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Yu, Kui
    Thuc Duy Le
    Liu, Jixue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 6108 - 6120