Bayesian Federated Estimation of Causal Effects from Observational Data

被引:0
|
作者
Thanh Vinh Vo [1 ]
Lee, Young [2 ]
Trong Nghia Hoang [3 ]
Leong, Tze-Yun [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
来源
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180 | 2022年 / 180卷
基金
新加坡国家研究基金会;
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Bayesian framework for estimating causal effects from federated observational data sources. Bayesian causal inference is an important approach to learning the distribution of the causal estimands and understanding the uncertainty of causal effects. Our framework estimates the posterior distributions of the causal effects to compute the higher-order statistics that capture the uncertainty. We integrate local causal effects from different data sources without centralizing them. We then estimate the treatment effects from observational data using a non-parametric reformulation of the classical potential outcomes framework. We model the potential outcomes as a random function distributed by Gaussian processes, with defining parameters that can be efficiently learned from multiple data sources. Our method avoids exchanging raw data among the sources, thus contributing towards privacy-preserving causal learning. The promise of our approach is demonstrated through a set of simulated and real-world examples.
引用
收藏
页码:2024 / 2034
页数:11
相关论文
共 50 条
  • [21] Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies
    Gruber, Susan
    van der Laan, Mark
    BIOPHARMACEUTICAL APPLIED STATISTICS SYMPOSIUM: BIOSTATISTICAL ANALYSIS OF CLINICAL TRIALS, VOL 2, 2018, : 1 - 23
  • [22] Estimating Causal Effects on Networked Observational Data via Representation Learning
    Jiang, Song
    Sun, Yizhou
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 852 - 861
  • [23] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [24] Causal Discovery with Heterogeneous Observational Data
    Zhou, Fangting
    He, Kejun
    Ni, Yang
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2383 - 2393
  • [25] Causal Models and Learning from Data Integrating Causal Modeling and Statistical Estimation
    Petersen, Maya L.
    van der Laan, Mark J.
    EPIDEMIOLOGY, 2014, 25 (03) : 418 - 426
  • [26] Causal discovery from observational and interventional data across multiple environments
    Li, Adam
    Jaber, Amin
    Bareinboim, Elias
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data
    Yang, Jiabei
    Dahabreh, Issa J.
    Steingrimsson, Jon A.
    BIOMETRICS, 2022, 78 (02) : 624 - 635
  • [28] Disproving Causal Relationships Using Observational Data
    Bryant, Henry L.
    Bessler, David A.
    Haigh, Michael S.
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2009, 71 (03) : 357 - 374
  • [29] Estimation of causal quantile effects with a binary instrumental variable and censored data
    Wei, Bo
    Peng, Limin
    Zhang, Mei-Jie
    Fine, Jason P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (03) : 559 - 578
  • [30] Causal Query in Observational Data with Hidden Variables
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Liu, Jixue
    Yu, Kui
    Le, Thuc Duy
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2551 - 2558