Task Offloading and Resource Allocation Strategies Based on Proximal Policy Optimization

被引:0
作者
Liu, Kai [1 ]
Yang, Wujun [1 ]
机构
[1] Xian Univ Posts & Telecommun, Dept Sch Commun & Informat Engn, Xian, Peoples R China
来源
2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024 | 2024年
关键词
edge computing; deep reinforcement learning; computational offloading; queuing models; proximal policy optimization;
D O I
10.1109/ICNLP60986.2024.10692353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to meet the service demands of new network applications and scenarios, computational offloading techniques in MEC have become a popular research issue. Aiming at solving the problems of delay deterioration and server resource scarcity caused by multi-users offloading tasks on edge servers at the same time, this paper firstly constructs a multi-terminal and single-server offloading model for tasks based on the queuing theory.Considering the user's delay experience under the delay-sensitive condition, introduces the weighted sum of the waiting probability and the task completion time as the optimization objective. On this basis, a proximal policy optimization-based computational offloading and resource allocation strategy is proposed. Finally, the simulation findings indicate that the algorithm proposed in this paper exhibits superior performance in optimizing the delay experience of user when compared to alternative algorithms.
引用
收藏
页码:693 / 698
页数:6
相关论文
共 16 条
  • [1] Chen XF, 2018, IEEE VTS VEH TECHNOL
  • [2] Optimized Computation Offloading Performance in Virtual Edge Computing Systems via Deep Reinforcement Learning
    Chen, Xianfu
    Zhang, Honggang
    Wu, Celimuge
    Mao, Shiwen
    Ji, Yusheng
    Bennis, Mehdi
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 4005 - 4018
  • [3] Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
    Deng, Shuiguang
    Zhao, Hailiang
    Fang, Weijia
    Yin, Jianwei
    Dustdar, Schahram
    Zomaya, Albert Y.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) : 7457 - 7469
  • [4] Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing
    Deng, Xiaoheng
    Yin, Jian
    Guan, Peiyuan
    Xiong, Neal N.
    Zhang, Lan
    Mumtaz, Shahid
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 2954 - 2966
  • [5] User-Centric Computation Offloading for Edge Computing
    Deng, Xiaoheng
    Sun, Zihui
    Li, Deng
    Luo, Jie
    Wan, Shaohua
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) : 12559 - 12568
  • [6] Mobile Code Offloading: From Concept to Practice and Beyond
    Flores, Huber
    Hui, Pan
    Tarkoma, Sasu
    Li, Yong
    Srirama, Satish
    Buyya, Rajkumar
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (03) : 80 - 88
  • [7] 基于无人机的移动边缘计算任务卸载
    刘建华
    林柯蒙
    衡振宇
    刘佳嘉
    谢家雨
    [J]. 南京邮电大学学报(自然科学版), 2023, 43 (02) : 36 - 45
  • [8] Mobile Edge Computing: A Survey on Architecture and Computation Offloading
    Mach, Pavel
    Becvar, Zdenek
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (03): : 1628 - 1656
  • [9] Online Deep Reinforcement Learning for Computation Offloading in Blockchain-Empowered Mobile Edge Computing
    Qiu, Xiaoyu
    Liu, Luobin
    Chen, Wuhui
    Hong, Zicong
    Zheng, Zibin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 8050 - 8062
  • [10] 基于移动边缘计算的任务卸载及隐私保护问题综述
    沈华
    王丽琼
    [J]. 武汉大学学报(理学版), 2023, 69 (02) : 258 - 269