Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range

被引:0
|
作者
Huang, Hao [1 ]
Du, Qinling [1 ]
Chen, Zixuan [1 ]
Deng, Hongzhong [1 ]
Yan, Changyuan [2 ]
Deng, Xianyu [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen 518055, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
electric double layer; ion-dipole interactions; oriented growth; wide temperature; zinc-ion batteries;
D O I
10.1002/adfm.202415451
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries are widely recognized as promising alternatives to lithium batteries due to their excellent safety, environmental compatibility, and cost-effectiveness. Nonetheless, the formation of dendrites, corrosion, and undesirable side reactions on the zinc surface pose significant challenges to the cycling stability of zinc-ion batteries. In this study, polar propylene carbonate (PC) is paired with tetrafluoroborate anions to establish a strong ion-dipole interaction. Strong ion-dipole interaction can not only alter the solvation structure of zinc ions but also facilitate the formation of a dynamic double electric layer on the surface of the zinc electrode, suppressing the formation of ZnF2 interface and carbonate, thereby facilitating uniform zinc ion deposition, and consequently improving battery cycling stability over a broad temperature range. Concretely, the formulated electrolyte enhances the cycling stability of the battery over a wide temperature range of -30 to 40 degrees C, accompanied by a capacity retention of approximate to 100% even after 10 000 cycles at -30 degrees C. The symmetrical battery utilizing this electrolyte exhibits stable cycling performance for over 1200 h at 25 degrees C and 1900 h at -30 degrees C, respectively. The findings provide a promising direction for the development of long-cycle batteries capable of operating over a wide temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Recent Progress on Zinc-Ion Rechargeable Batteries
    Xu, Wangwang
    Wang, Ying
    NANO-MICRO LETTERS, 2019, 11 (01)
  • [12] Challenges and Strategies in the Development of Zinc-Ion Batteries
    Loh, Jiong Rui
    Xue, Junmin
    Lee, Wee Siang Vincent
    SMALL METHODS, 2023, 7 (07)
  • [13] Zinc-ion batteries: Materials, mechanisms, and applications
    Ming, Jun
    Guo, Jing
    Xia, Chuan
    Wang, Wenxi
    Alshareef, Husam N.
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 135 : 58 - 84
  • [14] Recent Progress on Zinc-Ion Rechargeable Batteries
    Wangwang Xu
    Ying Wang
    Nano-Micro Letters, 2019, 11
  • [15] Reaction kinetics in rechargeable zinc-ion batteries
    Tan, Yan
    An, Fuqiang
    Liu, Yongchang
    Li, Shengwei
    He, Pingge
    Zhang, Ning
    Li, Ping
    Qu, Xuanhui
    JOURNAL OF POWER SOURCES, 2021, 492
  • [16] Dense Li Deposition and Enhanced Flame-retardant Enabled by Localized Strong Ion-Dipole Interactions
    Chen, Tao
    Sun, Lin
    Jin, Zhekai
    Liu, Yuncong
    Yan, Xinxiu
    Cui, Shuxun
    Wang, Chao
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [17] From Fundamentals to Practice: Electrolyte Strategies for Zinc-Ion Batteries in Extreme Temperature
    Xue, Tao
    Mu, Yongbiao
    Wei, Xiyan
    Zhou, Ziyan
    Zhou, Yuke
    Zhang, Zhengchu
    Yang, Chao
    Qiu, Jianhui
    Zang, Limin
    Zeng, Lin
    CARBON NEUTRALIZATION, 2025, 4 (01):
  • [18] Fundamentals and design strategies of electrolytes for high-temperature zinc-ion batteries
    Zhang, Xuefeng
    Liu, Yifan
    Wang, Shuai
    Wang, Jingxiu
    Cheng, Fan
    Tong, Yun
    Wei, Lei
    Fang, Zhao
    Mao, Jianfeng
    ENERGY STORAGE MATERIALS, 2024, 70
  • [19] Strong Replaces Weak: Hydrogen Bond-Anchored Electrolyte Enabling Ultra-Stable and Wide-Temperature Aqueous Zinc-Ion Capacitors
    Peng, Zhongyou
    Tang, Ling
    Li, Shulong
    Tan, Licheng
    Chen, Yiwang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (06)
  • [20] A highly stable zinc anode protected by a corrosion inhibitor for seawater-based zinc-ion batteries
    Shi, Bowei
    Meng, Rongwei
    Jiang, Xin
    Liu, Yingxin
    Wang, Huaiyuan
    Tang, Quanjun
    Wang, Li
    Zhang, Chen
    Ling, Guowei
    Yang, Quan-Hong
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 332 - 341