Simulation-free magnetic resonance-guided radiation therapy of prostate cancer

被引:0
作者
Warda, Cora [1 ]
Gani, Cihan [4 ]
Boeke, Simon [2 ,3 ,4 ]
Moennich, David [1 ]
Schneider, Moritz [1 ]
Niyazi, Maximilian [2 ,3 ,4 ]
Thorwarth, Daniela [1 ,2 ,3 ]
机构
[1] Univ Hosp Tubingen, Dept Radiat Oncol, Sect Biomed Phys, Hoppe Seyler Str 3, D-72076 Tubingen, Germany
[2] German Canc Consortium DKTK, Partner Site Tubingen, Partnership DKFZ, Tubingen, Germany
[3] Univ Hosp Tubingen, Tubingen, Germany
[4] Univ Hosp Tubingen, Dept Radiat Oncol, Tubingen, Germany
来源
PHYSICS & IMAGING IN RADIATION ONCOLOGY | 2024年 / 32卷
关键词
MRI-Linac; Planning study; Diagnostic CT data; Online adaptive MRI-guided radiation therapy; Simulation-free planning;
D O I
10.1016/j.phro.2024.100667
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Despite recent advances of online image-guided high-precision patient positioning and adaptation using magnetic resonance imaging (MRI) or cone-beam computed tomography (CT), standard radiation therapy pathway still involves a dedicated simulation scan. The aim of this study was to evaluate the feasibility and planning quality of integrating a simulation-free treatment planning workflow for adaptive online MRI-guided radiation therapy on a 1.5 T MRI linear accelerator (MRI-Linac) in prostate cancer using diagnostic CT (dCT) scans. Materials and methods: For ten patients with prostate cancer previously treated at the MRI-Linac with adaptive radiation therapy (42.7 Gy in 7 fractions), simulation-free reference plans based on dCT were retrospectively created, and adaptive plans were simulated for the first treatment fraction. Reference and adapted plans derived from both standard and simulation-free workflows were compared with regard to institutional dose/volume criteria, followed by statistical assessment using the paired Wilcoxon signed-rank test with a Bonferronicorrected significance level of alpha = 0.025. Results: Simulation-free reference and adapted plans consistently met dose/volume criteria. Statistical analysis revealed no significant differences between both workflows, except median values for near-maximum dose (D2%) in the planning target volume: 44.2 Gy (standard) vs. 44.5 Gy (simulation-free) in reference plans (p = 0.01), and 44.5 Gy vs. 44.6 Gy in adapted plans (p = 0.01). Conclusion: This study demonstrated the feasibility of simulation-free radiation therapy planning using dCT. Comparable treatment plan quality was observed for both reference and adapted radiation therapy plans in a curative setting for patients with prostate cancer.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Radiation oncology in the era of precision medicine [J].
Baumann, Michael ;
Krause, Mechthild ;
Overgaard, Jens ;
Debus, Juergen ;
Bentzen, Soren M. ;
Daartz, Juliane ;
Richter, Christian ;
Zips, Daniel ;
Bortfeld, Thomas .
NATURE REVIEWS CANCER, 2016, 16 (04) :234-249
[2]  
Brierley JD, 2017, UICC TNM CLASSIFICAT
[3]   Towards simulation-free MR-linac treatment: utilizing male pelvis PSMA-PET/CT and population-based electron density assignments [J].
Carr, Madeline E. ;
Jelen, Urszula ;
Picton, Maddison ;
Batumalai, Vikneswary ;
Crawford, David ;
Peng, Valery ;
Twentyman, Tania ;
de Leon, Jeremy ;
Jameson, Michael G. .
PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (19)
[4]   Synthetic CT generation from CBCT images via deep learning [J].
Chen, Liyuan ;
Liang, Xiao ;
Shen, Chenyang ;
Jiang, Steve ;
Wang, Jing .
MEDICAL PHYSICS, 2020, 47 (03) :1115-1125
[5]   Dosimetric Evaluation of Dose Calculation Uncertainties for MR-Only Approaches in Prostate MR-Guided Radiotherapy [J].
Coric, Ivan ;
Shreshtha, Kumar ;
Roque, Thais ;
Paragios, Nikos ;
Gani, Cihan ;
Zips, Daniel ;
Thorwarth, Daniela ;
Nachbar, Marcel .
FRONTIERS IN PHYSICS, 2022, 10
[6]   Image-guided radiotherapy: rationale, benefits, and limitations [J].
Dawson, Laura A. ;
Sharpe, Michael B. .
LANCET ONCOLOGY, 2006, 7 (10) :848-858
[7]   Adapting outside the box: Simulation-free MR-guided stereotactic ablative radiotherapy for prostate cancer [J].
de Leon, Jeremiah ;
Jelen, Urszula ;
Carr, Madeline ;
Crawford, David ;
Picton, Maddison ;
Tran, Charles ;
McKenzie, Laura ;
Peng, Valery ;
Twentyman, Tania ;
Jameson, Michael G. ;
Batumalai, Vikneswary .
RADIOTHERAPY AND ONCOLOGY, 2024, 200
[8]   Adaptive radiotherapy for breast cancer [J].
De-Colle, C. ;
Kirby, A. ;
Russell, N. ;
Shaitelman, S. F. ;
Currey, A. ;
Donovan, E. ;
Hahn, E. ;
Han, K. ;
Anandadas, C. N. ;
Mahmood, F. ;
Lorenzen, E. L. ;
van den Bongard, D. ;
Koerkamp, M. L. Groot ;
Houweling, A. C. ;
Nachbar, M. ;
Thorwarth, D. ;
Zips, D. .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2023, 39
[9]   DAILY IMAGE GUIDANCE WITH CONE-BEAM COMPUTED TOMOGRAPHY FOR HEAD-AND-NECK CANCER INTENSITY-MODULATED RADIOTHERAPY: A PROSPECTIVE STUDY [J].
Den, Robert B. ;
Doemer, Anthony ;
Kubicek, Greg ;
Bednarz, Greg ;
Galvin, James M. ;
Keane, William M. ;
Xiao, Ying ;
Machtay, Mitchell .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 76 (05) :1353-1359
[10]   Practical Implementation of Emergent After- Hours Radiation Treatment Process Using Remote Treatment Planning on Optimized Diagnostic CT Scans [J].
Fakhoury, Kareem R. ;
Schubert, Leah K. ;
Coyne, Mychaela D. ;
Aldridge, Wes ;
Zeiler, Sabrina ;
Stuhr, Kelly ;
V. Waxweiler, Timothy ;
Robin, Tyler P. ;
Schefter, Tracey E. ;
Kavanagh, Brian D. ;
Nath, Sameer K. .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (12)