Index of coregularity zero log Calabi-Yau pairs

被引:0
作者
Filipazzi, Stefano [1 ]
Mauri, Mirko [2 ]
Moraga, Joaquin [3 ]
机构
[1] Ecole Polytech Fed Lausanne, SB MATH CAG, Lausanne, Switzerland
[2] Ecole Polytech, Palaiseau, France
[3] UCLA, Dept Math, Los Angeles, CA USA
关键词
Calabi-Yau; index conjecture; dual complex; minimal model program; mirror symmetry; ABUNDANCE THEOREM; DUAL COMPLEX; AUTOMORPHISMS; DEGENERATION;
D O I
10.2140/ant.2025.19.383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the index of log Calabi-Yau pairs (X, B) of coregularity 0. We show that 2 lambda(KX + B) similar to 0, where lambda is the Weil index of (X, B). This is in contrast to the case of klt Calabi-Yau varieties, where the index can grow doubly exponentially with the dimension. Our sharp bound on the index extends to the context of generalized log Calabi-Yau pairs, semi-log canonical pairs, and isolated log canonical singularities of coregularity 0. As a consequence, we show that the index of a variety appearing in the Gross-Siebert program or in the Kontsevich-Soibelman program is at most 2. Finally, we discuss applications to Calabi-Yau varieties endowed with a finite group action, including holomorphic symplectic varieties endowed with a purely nonsymplectic automorphism.
引用
收藏
页码:383 / 413
页数:34
相关论文
共 48 条
  • [1] Weak semistable reduction in characteristic 0
    Abramovich, D
    Karu, K
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (02) : 241 - 273
  • [2] Alexeev V., 2024, arXiv, V11, P144
  • [3] Beauville A., 1996, Lond. Math. Soc. Stud. Texts, Vsecond, DOI [DOI 10.1017/CBO9780511623936, 10.1017/CBO9780511623936]
  • [4] Birkar C., 2019, ANN MATH, V190, P345, DOI DOI 10.4007/annals.2019.190.2.1
  • [5] Blaga P, 2007, STUD U BABES-BOL MAT, V52, P166
  • [6] Classification of automorphisms on a deformation family of hyper-Kahler four-folds by p-elementary lattices
    Boissiere, Samuel
    Camere, Chiara
    Sarti, Alessandra
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 465 - 499
  • [7] Bredon Glen E, 1972, Pure and Applied Mathematics
  • [8] de Fernex T, 2017, ADV STU P M, V74, P103
  • [9] Debarre O., 2001, Higher-dimensional algebraic geometry
  • [10] Esser L., 2022, PREPRINT