A NOTE ON THE GENERALIZATION OF SECOND MAIN THEOREM FOR HYPERSURFACES IN SUBGENERAL POSITION

被引:0
作者
Shi, Lei [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2024年 / 50卷 / 02期
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; second main theorem; hypersurfaces; subgeneral position; HOLOMORPHIC-CURVES; SUBSPACE THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In previous work, we gave an improvement of Schmidt's subspace type theorem for hypersurfaces in projective space in subgeneral position. In this paper, we give a further improvement of its corresponding result in Nevanlinna theory for some special cases, and we also state analogous result in Diophantine approximation at the end of this paper.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 19 条
  • [1] Cartan H., 1933, Mathematica(Cluj), V7, P80
  • [2] The degenerated second main theorem and Schmidt's subspace theorem
    Chen ZhiHua
    Ru Min
    Yan QiMing
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1367 - 1380
  • [3] On a general Thue's equation
    Corvaja, P
    Zannier, U
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) : 1033 - 1055
  • [4] A generalization of the Subspace Theorem with polynomials of higher degree
    Evertse, Jan-Hendrik
    Ferretti, Roberto G.
    [J]. DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 175 - +
  • [5] Heier G, 2023, Arxiv, DOI arXiv:2308.11460
  • [6] A GENERALIZED SCHMIDT SUBSPACE THEOREM FOR CLOSED SUBSCHEMES
    Heier, Gordon
    Levin, Aaron
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) : 213 - 226
  • [7] On the theory of meromorphic functions
    Nevanlinna, R
    [J]. ACTA MATHEMATICA, 1925, 46 (1-2) : 1 - 99
  • [8] Nochka E. I., 1982, Izv. Akad. Nauk Moldav. SSR Ser, Fiz.- Tekhn. Mat. Nauk, V1982, P29
  • [9] Nochka E. I., 1982, Izv. Akad. Nauk Moldav. SSR Ser, Fiz.-Tekhn. Mat. Nauk, V1982, P41
  • [10] NOCHKA EI, 1983, DOKL AKAD NAUK SSSR+, V269, P547