FB-ZWUNet: A deep learning network for corpus callosum segmentation in fetal brain ultrasound images for prenatal diagnostics

被引:0
作者
Wang, Qifeng [1 ,2 ,3 ,4 ]
Zhao, Dan [5 ]
Ma, Hao [1 ,2 ,3 ,4 ]
Liu, Bin [1 ,2 ,3 ,4 ]
机构
[1] Dalian Univ Technol, Canc Hosp, Dalian, Peoples R China
[2] Dalian Univ Technol, DUT Sch Software Technol, Dalian, Peoples R China
[3] Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian, Peoples R China
[4] Dalian Univ Technol, DUT RU Cores Ctr Adv ICT Act Life, Dalian, Peoples R China
[5] China Med Univ, Shengjing Hosp, Dept Ultrasound, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fetal Brain Ultrasound; Corpus Callosum Segmentation; Prenatal Diagnostics; AGENESIS;
D O I
10.1016/j.bspc.2025.107499
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Develop an automated method to replace manual segmentation of the corpus callosum (CC) in fetal brain ultrasound images, thereby reducing reliance on specialist expertise and mitigating human error, ultimately improving CC segmentation accuracy and enhancing fetal brain development assessments. Methods: We propose FB-ZWUNet, an end-to-end CC segmentation network composed of three key modules: (1) Zernike Attention Module (ZAM) for feature enhancement, (2) Wavelet Attention Module (WAM) for optimized feature fusion and precise image reconstruction, and (3) Morphological Constraint Module (MCM) for accurate edge and region capture. The network was trained on the FB-CC dataset, which consists of 1,336 annotated fetal brain mid-sagittal ultrasound images. Results: FB-ZWUNet achieved a Dice coefficient of 0.8743 and IoU of 0.7813, outperforming current state-of-theart methods in accuracy and stability while offering faster inference times. The FB-CC dataset provides comprehensive samples from 18 to 32 weeks of gestation, collected using three different ultrasound devices. Conclusions: FB-ZWUNet effectively addresses segmentation challenges, demonstrating significant clinical potential in assessing fetal neurological development and improving the reliability of early diagnosis and prenatal care.
引用
收藏
页数:15
相关论文
共 65 条
  • [1] FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery
    Alzubaidi, Mahmood
    Shah, Uzair
    Agus, Marco
    Househ, Mowafa
    [J]. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2024, 5 : 281 - 295
  • [2] Large-scale annotation dataset for fetal head biometry in ultrasound images
    Alzubaidi, Mahmood
    Agus, Marco
    Makhlouf, Michel
    Anver, Fatima
    Alyafei, Khalid
    Househ, Mowafa
    [J]. DATA IN BRIEF, 2023, 51
  • [4] [Anonymous], 1968, 3x3 Isotropic Gradient Operator for Image Processing
  • [5] Bilogur A, 2021, PyTorch Training Performance Guide
  • [6] Born M., 2013, PRINCIPLES OPTICS EL, DOI 10.1017/CBO9781139644181
  • [7] Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China
    Cai, Kui-Zheng
    Liu, Jun-Lin
    Liu, Wei
    Wang, Bo-Bo
    Xu, Qiang
    Sun, Long-Jie
    Chen, Ming-Yue
    Zhao, Ming-Wang
    Wu, Jia-Yan
    Li, Xiao-Shan
    Yang, Jing
    Wei, Shuan
    Chen, Chun-Rong
    Ma, Zhong-Ren
    Xu, Chun-Lan
    Wang, Feng
    Hu, Qian-Lin
    Fang, Wen-Xiu
    Zheng, Tian-Hui
    Wang, Yue-Ying
    Zhu, Wen-Long
    Li, Dan
    Li, Qing
    Zhang, Chao
    Cai, Bing
    Wang, Fan
    Yang, Zai-Yun
    Liu, Yan-Qiu
    [J]. JOURNAL OF BASIC MICROBIOLOGY, 2016, 56 (03) : 214 - 228
  • [9] Cao H., 2021, arXiv, DOI DOI 10.48550/ARXIV.2105.05537
  • [10] Graph-based learning for segmentation of 3D ultrasound images
    Chang, Huali
    Chen, Zhenping
    Huang, Qinghua
    Shi, Jun
    Li, Xuelong
    [J]. NEUROCOMPUTING, 2015, 151 : 632 - 644