High-Speed 3D Printing Coupled with Machine Learning to Accelerate Alloy Development for Additive Manufacturing

被引:0
作者
Hariharan, Avinash [1 ]
Ackermann, Marc [1 ,2 ]
Koss, Stephan [3 ]
Khosravani, Ali [4 ,5 ]
Schleifenbaum, Johannes Henrich [3 ]
Koehnen, Patrick [6 ]
Kalidindi, Surya R. [4 ]
Haase, Christian [7 ,8 ]
机构
[1] Rhein Westfal TH Aachen, Steel Inst, D-52072 Aachen, Germany
[2] Salzgitter Mannesmann Forsch GmbH, D-38239 Salzgitter, Germany
[3] Rhein Westfal TH Aachen, Chair Digital Addit Prod, Aachen, Germany
[4] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[5] Multiscale Technol llc, Atlanta, GA 30308 USA
[6] GKN Addit, D-53117 Bonn, Germany
[7] Tech Univ Berlin, Chair Mat Addit Mfg, D-10587 Berlin, Germany
[8] Tech Univ Berlin, Ctr Technol 3D, D-10623 Berlin, Germany
基金
欧洲研究理事会;
关键词
alloy design for AM; alloys for additive manufacturing; high-speed DED; high-throughput screening; machine learning; STRUCTURE-PROPERTY LINKAGES; SPHERICAL NANOINDENTATION; METALLIC GLASSES; INVERSE DESIGN; STRESS; FLOW; MICROSTRUCTURES; DEFORMATION; STEELS; MTEX;
D O I
10.1002/advs.202414880
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing novel alloys for 3D printing of metals is a time- and resource-intensive challenge. High-throughput 3D printing and material characterization protocols are used in this work to rapidly screen a wide range of chemical compositions and processing conditions. In situ, alloying of high-strength steel with pure Al in the targeted range of 0-10 wt.% and flexible adjustment of the volumetric energy input is performed to derive 20 individual alloy combinations. These conditions are characterized using large-area crystallographic analysis combined with chemistry and nanoindentation protocols. The significant influence of Al content and processing conditions on the constitutive material behavior of the metastable base alloy allowed for efficient exploration of the underlying process-structure-properties (PSP) relationships. The extracted PSP relations are discussed based on the dominant physical mechanisms observed in the samples. Furthermore, the microstructure-property relationship based on limited experimental data is supported by an explainable machine-learning approach.
引用
收藏
页数:15
相关论文
共 73 条
[41]   Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J].
Kuernsteiner, Philipp ;
Wilms, Markus B. ;
Weisheit, Andreas ;
Barriobero-Vila, Pere ;
Jaegle, Eric A. ;
Raabe, Dierk .
ACTA MATERIALIA, 2017, 129 :52-60
[42]   Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization [J].
Kusampudi, Navyanth ;
Diehl, Martin .
INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 171
[43]   Fast inverse design of microstructures via generative invariance networks [J].
Lee, Xian Yeow ;
Waite, Joshua R. ;
Yang, Chih-Hsuan ;
Pokuri, Balaji Sesha Sarath ;
Joshi, Ameya ;
Balu, Aditya ;
Hegde, Chinmay ;
Ganapathysubramanian, Baskar ;
Sarkar, Soumik .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (03) :229-238
[44]   Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation [J].
Li, W. H. ;
Wei, B. C. ;
Zhang, T. H. ;
Xing, D. M. ;
Zhang, L. C. ;
Wang, Y. R. .
INTERMETALLICS, 2007, 15 (5-6) :706-710
[45]   On the origin of grain refinement and twin boundaries in as-fabricated austenitic stainless steels produced by laser powder bed fusion [J].
Monier, Leo ;
Buttard, Maxence ;
Veron, Muriel ;
Blandin, Jean-Jacques ;
Martin, Guilhem ;
Villaret, Flore ;
Shen, Yang ;
Yrieix, Bernard ;
Ernould, Clement ;
Guyon, Julien ;
Despres, Arthur .
ADDITIVE MANUFACTURING, 2023, 61
[46]   Orientations - perfectly colored [J].
Nolze, G. ;
Hielscher, R. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 :1786-1802
[47]   Local porosity prediction in metal powder bed fusion using in-situ thermography: A comparative study of machine learning techniques [J].
Oster, Simon ;
Scheuschner, Nils ;
Chand, Keerthana ;
Altenburg, Simon J. .
ADDITIVE MANUFACTURING, 2024, 95
[48]   High-Throughput Exploration of the Process Space in 18% Ni (350) Maraging Steels via Spherical Indentation Stress-Strain Protocols and Gaussian Process Models [J].
Parvinian, Sepideh ;
Yabansu, Yuksel C. ;
Khosravani, Ali ;
Garmestani, Hamid ;
Kalidindi, Surya R. .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2020, 9 (03) :199-212
[49]  
Pathak S, 2017, SCI REP-UK, V7, DOI [10.1038/s41598-017-08302-5, 10.1038/s41598-017-12071-6]
[50]   Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy [J].
Pathak, Siddhartha ;
Stojakovic, Dejan ;
Kalidindi, Surya R. .
ACTA MATERIALIA, 2009, 57 (10) :3020-3028