Prediction of depressive symptoms severity based on sleep quality, anxiety, and gray matter volume: a generalizable machine learning approach across three datasets

被引:10
作者
Olfati, Mahnaz [1 ]
Samea, Fateme [2 ,3 ]
Faghihroohi, Shahrooz [1 ]
Balajoo, Somayeh Maleki [2 ,3 ]
Kueppers, Vincent [2 ,3 ,4 ,5 ]
Genon, Sarah [2 ,3 ]
Patil, Kaustubh [2 ,3 ]
Eickhoff, Simon B. [2 ,3 ]
Tahmasian, Masoud [2 ,3 ,4 ,5 ]
机构
[1] Shahid Beheshti Univ, Inst Med Sci & Technol, Tehran, Iran
[2] Heinrich Heine Univ Dusseldorf, Inst Syst Neurosci, Med Fac, Dusseldorf, Germany
[3] Res Ctr Julich, Inst Neurosci & Med Brain Behav INM7, Wilhelm Johnen Str, Julich, Germany
[4] Univ Cologne, Univ Hosp, Dept Nucl Med, Cologne, Germany
[5] Univ Cologne, Med Fac, Cologne, Germany
关键词
Depressive symptoms severity; Sleep quality; Anxiety; Brain; Machine learning; INSOMNIA;
D O I
10.1016/j.ebiom.2024.105313
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Depressive symptoms are rising in the general population, but their associated factors are unclear. Although the link between sleep disturbances and depressive symptoms severity (DSS) is reported, the predictive role of sleep on DSS and the impact of anxiety and the brain on their relationship remained obscure. Methods Using three population-based datasets (N = 1813), we trained the machine learning models in the primary dataset (N = 1101) to assess the predictive role of sleep quality, anxiety problems, and brain structural (and functional) measurements on DSS, then we tested our models' performance in two independent datasets (N = 378, N = 334) to test the generalizability of our findings. Furthermore, we applied our model to a smaller longitudinal subsample (N = 66). In addition, we performed a mediation analysis to identify the role of anxiety and brain measurements on the sleep quality and DSS association. Findings Sleep quality could predict individual DSS (r = 0.43, R-2 = 0.18, rMSE = 2.73), and adding anxiety, contrary to brain measurements, strengthened its prediction performance (r = 0.67, R-2 = 0.45, rMSE = 2.25). Importantly, out-of-cohort validations in other cross-sectional datasets and a longitudinal subsample provided robust similar results. Furthermore, anxiety scores, contrary to brain measurements, mediated the association between sleep quality and DSS. Interpretation Poor sleep quality could predict DSS at the individual subject level across three datasets. Anxiety scores not only increased the predictive model's performance but also mediated the link between sleep quality and DSS. Copyright (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2024;108: Published September https://doi.org/10. 1016/j.ebiom.2024. 105313
引用
收藏
页数:12
相关论文
共 60 条
[1]  
Achenbach System of Empirically Based Assessment (ASEBA), Adult (ages 18-59) assessments
[2]   A Systematic Review Assessing Bidirectionality between Sleep Disturbances, Anxiety, and Depression [J].
Alvaro, Pasquale K. ;
Roberts, Rachel M. ;
Harris, Jodie K. .
SLEEP, 2013, 36 (07) :1059-1068
[3]  
[Anonymous], 2012, Practical bayesian optimization of machine learning algorithms
[4]  
Arbuckle JL, 2019, Amos (version 24.0)
[5]   Neuroimaging insights into the link between depression and Insomnia: A systematic review [J].
Bagherzadeh-Azbari, Shadi ;
Khazaie, Habibolah ;
Zarei, Mojtaba ;
Spiegelhalder, Kai ;
Walter, Martin ;
Leerssen, Jeanne ;
Van Someren, Eus J. W. ;
Sepehry, Amir A. ;
Tahmasian, Masoud .
JOURNAL OF AFFECTIVE DISORDERS, 2019, 258 :133-143
[6]   Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies [J].
Baglioni, Chiara ;
Battagliese, Gemma ;
Feige, Bernd ;
Spiegelhalder, Kai ;
Nissen, Christoph ;
Voderholzer, Ulrich ;
Lombardo, Caterina ;
Riemann, Dieter .
JOURNAL OF AFFECTIVE DISORDERS, 2011, 135 (1-3) :10-19
[7]   Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures [J].
Belov, Vladimir ;
Erwin-Grabner, Tracy ;
Aghajani, Moji ;
Aleman, Andre ;
Amod, Alyssa R. ;
Basgoze, Zeynep ;
Benedetti, Francesco ;
Besteher, Bianca ;
Buelow, Robin ;
Ching, Christopher R. K. ;
Connolly, Colm G. ;
Cullen, Kathryn ;
Davey, Christopher G. ;
Dima, Danai ;
Dols, Annemiek ;
Evans, Jennifer W. ;
Fu, Cynthia H. Y. ;
Gonul, Ali Saffet ;
Gotlib, Ian H. ;
Grabe, Hans J. ;
Groenewold, Nynke ;
Hamilton, J. Paul ;
Harrison, Ben J. ;
Ho, Tiffany C. ;
Mwangi, Benson ;
Jaworska, Natalia ;
Jahanshad, Neda ;
Klimes-Dougan, Bonnie ;
Koopowitz, Sheri-Michelle ;
Lancaster, Thomas ;
Li, Meng ;
Linden, David E. J. ;
MacMaster, Frank P. ;
Mehler, David M. A. ;
Melloni, Elisa ;
Mueller, Bryon A. ;
Ojha, Amar ;
Oudega, Mardien L. ;
Penninx, Brenda W. J. H. ;
Poletti, Sara ;
Pomarol-Clotet, Edith ;
Portella, Maria J. ;
Pozzi, Elena ;
Reneman, Liesbeth ;
Sacchet, Matthew D. ;
Saemann, Philipp G. ;
Schrantee, Anouk ;
Sim, Kang ;
Soares, Jair C. ;
Stein, Dan J. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[8]   Overanxious and underslept [J].
Ben Simon, Eti ;
Rossi, Aubrey ;
Harvey, Allison G. ;
Walker, Matthew P. .
NATURE HUMAN BEHAVIOUR, 2020, 4 (01) :100-+
[9]   Network outcome analysis identifies difficulty initiating sleep as a primary target for prevention of depression: a 6-year prospective study [J].
Blanken, Tessa F. ;
Borsboom, Denny ;
Penninx, Brenda W. J. H. ;
Van Someren, Eus J. W. .
SLEEP, 2020, 43 (05)
[10]   The Lifespan Human Connectome Project in Aging: An overview [J].
Bookheimer, Susan Y. ;
Salat, David H. ;
Terpstra, Melissa ;
Ances, Beau M. ;
Barch, Deanna M. ;
Buckner, Randy L. ;
Burgess, Gregory C. ;
Curtiss, Sandra W. ;
Diaz-Santos, Mirella ;
Elam, Jennifer Stine ;
Fischl, Bruce ;
Greve, Douglas N. ;
Hagy, Hannah A. ;
Harms, Michael P. ;
Hatch, Olivia M. ;
Hedden, Trey ;
Hodge, Cynthia ;
Japardi, Kevin C. ;
Kuhn, Taylor P. ;
Ly, Timothy K. ;
Smith, Stephen M. ;
Somerville, Leah H. ;
Ugurbil, Kamil ;
van der Kouwe, Andre ;
Van Essen, David ;
Woods, Roger P. ;
Yacoub, Essa .
NEUROIMAGE, 2019, 185 :335-348