Artificial cell-free system for the sustainable production of acetoin from bioethanol

被引:1
作者
Munoz-Sanchez, David [1 ]
Carceller, Albert [1 ]
Alvaro, Gregorio [1 ]
Romero, Oscar [1 ]
Guillen, Marina [1 ]
机构
[1] Univ Autonoma Barcelona, Engn Sch, Dept Chem Biol & Environm Engn, Barcelona 08193, Spain
关键词
Biocatalysis; Multi-enzymatic system; Acetoin; Bioethanol; Bio-based chemical; Cofactor regeneration; Renewable feedstock; YEAST PYRUVATE DECARBOXYLASE; BACILLUS-LICHENIFORMIS; OXIDASE;
D O I
10.1016/j.biortech.2025.132059
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U center dot mL- 1, ScADH 50 U center dot mL-1, SpNOX 127 U center dot mL-1, and 1 mM NAD+). Using air for oxygen supply mitigates enzyme inactivation while effectively accelerating the regeneration of NAD+. The use of bioethanol as a substrate demonstrates the robustness and sustainability of the bioprocess, enabling the production of natural acetoin from renewable resources. This environmentally friendly approach offers significant advantages for industrial applications, aligning with green chemistry principles.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Engineering of yeast pyruvate decarboxylase for enhanced selectivity towards carboligation [J].
Agarwal, Praveen Kumar ;
Uppada, Vanita ;
Swaminathan, A. G. ;
Noronha, Santosh B. .
BIORESOURCE TECHNOLOGY, 2015, 192 :90-96
[2]  
Alcántara AR, 2022, CHEMSUSCHEM, V15, DOI [10.1002/cssc.202200707, 10.1002/cssc.202102709]
[3]   Chiral Synthesis of 3-Amino-1-phenylbutane by a Multi-Enzymatic Cascade System [J].
Alcover, Natalia ;
Alvaro, Gregorio ;
Guillen, Marina .
CATALYSTS, 2021, 11 (08)
[4]   Zymobacter palmae pyruvate decarboxylase production process development: Cloning in Escherichia coli, fed-batch culture and purification [J].
Alcover, Natalia ;
Carceller, Albert ;
Alvaro, Gregorio ;
Guillen, Marina .
ENGINEERING IN LIFE SCIENCES, 2019, 19 (07) :502-512
[5]  
[Anonymous], 2019, EUROPEAN GREEN DEAL
[6]   The kinetic behavior of dehydrogenase enzymes in solution and immobilized onto nanostructured carbon platforms [J].
Aquino Neto, Sidney ;
Forti, Juliane C. ;
Zucolotto, Valtencir ;
Ciancaglini, Pietro ;
De Andrade, Adalgisa R. .
PROCESS BIOCHEMISTRY, 2011, 46 (12) :2347-2352
[7]   Biocatalysis [J].
Bell, Elizabeth L. ;
Finnigan, William ;
France, Scott P. ;
Green, Anthony P. ;
Hayes, Martin A. ;
Hepworth, Lorna J. ;
Lovelock, Sarah L. ;
Niikura, Haruka ;
Osuna, Silvia ;
Romero, Elvira ;
Ryan, Katherine S. ;
Turner, Nicholas J. ;
Flitsch, Sabine L. .
NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01)
[8]   Lactic Acid from CO2: A Carbon Capture and Utilization Strategy Based on a Biocatalytic Approach [J].
Carceller, Albert ;
Guillen, Marina ;
Alvaro, Gregorio .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (51) :21727-21735
[9]   BREWERS-YEAST PYRUVATE DECARBOXYLASE PRODUCES ACETOIN FROM ACETALDEHYDE - A NOVEL TOOL TO STUDY THE MECHANISM OF STEPS SUBSEQUENT TO CARBON-DIOXIDE LOSS [J].
CHEN, GC ;
JORDAN, F .
BIOCHEMISTRY, 1984, 23 (16) :3576-3582
[10]   In vitro biosynthesis of optically pure d-(-)-acetoin from meso-2,3-butanediol using 2,3-butanediol dehydrogenase and NADH oxidase [J].
Cui, Zhenzhen ;
Zhao, Yujiao ;
Mao, Yufeng ;
Shi, Ting ;
Lu, Lingxue ;
Ma, Hongwu ;
Wang, Zhiwen ;
Chen, Tao .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2019, 94 (08) :2547-2554