Optimizing heat transfer in phase change thermal energy storage systems: A bionic method using alveolar vessel fins and nanofluids

被引:1
|
作者
Ren, Fan [1 ]
Li, Qibin [1 ]
Wang, Penglai [1 ,2 ]
机构
[1] Chongqing Univ, Sch Energy & Power Engn, Key Lab Low grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
基金
中国国家自然科学基金;
关键词
Alveolar vessel; Nano-fluid; Phase change thermal energy storage; Non-dominated sorting genetic algorithm; TRIPLEX TUBE; ENHANCEMENT; EXCHANGER;
D O I
10.1016/j.applthermaleng.2025.125668
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates the enhanced heat transfer performance of a phase change thermal energy storage system (TES) using alveolar vessel-inspired fins and nano-fluid. Compared with traditional rectangular fins, alveolar vascular fins have better heat dissipation ability. The study utilizes computational fluid dynamics (CFD) to simulate and optimize the heat storage process. The results demonstrate that the 5 % Cu nanoparticles and water mixed nanofluid exhibits 27.63 % improvement in heat storage density compared to pure water. Furthermore, the heat transfer performance of nanofluid follows the trend Cu > CuO > Al2O3 > TiO2. The study also investigates the impact of heat transfer fluid (HTF) operating conditions, finding that an initial velocity of 0.25 m/s results in a 17 K increase in the average phase change material (PCM) temperature compared to 0.05 m/s. Finally, multi-objective optimization is conducted using response surface method and non-dominated sorting genetic algorithm II to determine the optimal parameters, heat storage capacity, PCM average temperature and kinetic energy values of 10.33 kJ, 492.19 K, and 2.25 mJ, respectively, corresponding to initial velocity 0.15 m/s of HTF, initial temperature 373.00 K of HTF, and volume fraction 4.41 % of nanoparticles in HTF. This simulation and multi-objective optimization method highlights the bionic inspiration design, and at the same time has certain reference significance for the multi-objective competitive design of nano-fluids in TES.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Optimizing of partial porous structure for efficient heat transfer and thermal energy storage of phase change material in a rectangular cavity
    Kiyak, Burak
    Oztop, Hakan F.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (22) : 13425 - 13441
  • [22] NUMERICAL STUDY OF HEAT STORAGE PERFORMANCE IN PHASE CHANGE ENERGY STORAGE ENHANCED BY FINS
    Yu J.
    Liu Y.
    Zhang F.
    Zhang S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 78 - 83
  • [23] A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
    Agyenim, Francis
    Hewitt, Neil
    Eames, Philip
    Smyth, Mervyn
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02): : 615 - 628
  • [24] Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
    Soltani, Hossein
    Soltani, M.
    Karimi, H.
    Nathwani, Jatin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 179
  • [25] A comparison of heat transfer enhancement in medium temperature thermal energy storage heat exchanger using fins and multitubes
    Agyenim, Francis
    Eames, Philip
    Smyth, Mervyn
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 2726 - +
  • [26] HEAT-TRANSFER ANALYSIS OF THERMAL-ENERGY STORAGE USING PHASE-CHANGE MATERIALS
    RADHAKRISHNAN, KB
    BALAKRISHNAN, AR
    HEAT RECOVERY SYSTEMS & CHP, 1992, 12 (05): : 427 - 435
  • [27] Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process
    Miao, Xiaomang
    Riaz, Fahid
    Alotaibi, Badr
    Agrawal, Manoj Kumar
    Abuhussain, Mohammed
    Alsenani, Theyab R.
    Balderlou, Mansoureh Alizadeh
    Lin, Qing
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 568 - 579
  • [28] Heat transfer performance and structural optimization design method of vertical phase change thermal energy storage device
    Chen, Chao
    Liang, Lu
    Zhang, Ye
    Chen, Ziguang
    Xie, Guangya
    ENERGY AND BUILDINGS, 2014, 68 : 679 - 685
  • [29] Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer
    Mirahmad, Ali
    Kumar, Ravi Shankar
    Doldan, Breogan Pato
    Rios, Cristina Prieto
    Diez-Sierra, Javier
    NANOMATERIALS, 2025, 15 (04)
  • [30] Phase change heat transfer in a vertical metal foam-phase change material thermal energy storage heat dissipator
    Ghalambaz, Mehdi
    Mehryan, S. A. M.
    Ramezani, Sayed Reza
    Hajjar, Ahmad
    El Kadri, Mohamad
    Islam, Mohamamd S.
    Younis, Obai
    Ghodrat, Maryam
    JOURNAL OF ENERGY STORAGE, 2023, 66