HOPF BIFURCATION AND STABILITY ANALYSIS FOR A DELAYED EQUATION WITH φ-LAPLACIAN

被引:0
作者
Amster, Pablo [1 ,2 ]
Kuna, Mariel p. [1 ,2 ]
Santos, Dionicio [3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Pabellon 1, RA-1428 Buenos Aires, Argentina
[3] Univ Nacl Ctr Prov Buenos Aires, Fac Ciencias Exactas, Dept Matemat, Pinto 399, RA-7000 Buenos Aires, Argentina
关键词
Key words and phrases. Functional-delay equations; Lyapunov-Krasovskii functional; sta-; bility; Hopf bifurcation; periodic solutions; SUNFLOWER EQUATION; PERIODIC-SOLUTIONS; KIND;
D O I
10.12775/TMNA.2024.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. A formal framework for the analysis of Hopf bifurcations for a kind of delayed equation with phi-Laplacian and with a discrete time delay is presented, thus generalizing known results for the sunflower equation given by Somolinos in 1978. Also, under appropriate assumptions we prove the gradient-like behavior of the equation which, in turn, implies the non-existence of nonconstant periodic solutions. Our conditions improve previous results known in the literature for the standard case phi(x) = x.
引用
收藏
页码:545 / 559
页数:15
相关论文
共 13 条
[1]   STABILITY, EXISTENCE AND NON-EXISTENCE OF T-PERIODIC SOLUTIONS OF NONLINEAR DELAYED DIFFERENTIAL EQUATIONS WITH φ-LAPLACIAN [J].
Amster, Pablo ;
Kuna, Mariel Paula ;
Santos, Dionicio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (08) :2723-2737
[2]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[3]   STABILITY THEOREMS FOR NONAUTONOMOUS FUNCTIONAL-DIFFERENTIAL EQUATIONS BY LIAPUNOV FUNCTIONALS [J].
BURTON, T ;
HATVANI, L .
TOHOKU MATHEMATICAL JOURNAL, 1989, 41 (01) :65-104
[4]  
Burton T.A., 2005, STABILITY PERIODIC S
[5]   FORCED-OSCILLATIONS FOR THE SUNFLOWER EQUATION, ENTRAINMENT [J].
CASAL, A ;
SOMOLINOS, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (04) :397-414
[6]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[7]  
HUANG X., 1994, Chinese Sci. Bull., V39, P201
[8]   Periodic solutions for a kind of Lienard equation [J].
Liu, Xin-Ge ;
Tang, Mei-Lan ;
Martin, Ralph R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) :263-275
[9]   Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument [J].
Lu, SP ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :393-419
[10]   Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J].
Lu, SP ;
Ge, WG .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :195-209