Customized Branched Neural Network-Aided Shuffled Min-Sum Decoder for Protograph LDPC Codes

被引:0
作者
Wang, Yurong [1 ]
Lv, Liang [1 ]
Fang, Yi [1 ]
Li, Yonghui [2 ]
Mumtaz, Shahid [3 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] Nottingham Trent Univ, Dept Comp Sci, Nottingham NG1 4FQ, England
[4] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi do, South Korea
基金
中国国家自然科学基金;
关键词
Decoding; Codes; Iterative decoding; Training; Convergence; Iterative methods; Biological neural networks; Branched neuron mean difference (BNMD); customized branched neural network (CBNN); model-driven deep learning; neural shuffled min-sum decoder (NSMS); protograph LDPC codes; PARITY-CHECK CODES; BELIEF-PROPAGATION; DESIGN; 5G; OPTIMIZATION; CAPACITY; SYSTEMS;
D O I
10.1109/TVT.2024.3459692
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper designs a novel neural shuffled min-sum (NSMS) decoder with the model-driven deep learning method to achieve higher efficient and lower complexity decoding for protograph low-density parity-check (LDPC) codes. We propose a new type of customized branched neural network (CBNN) structure, which integrates shuffled min-sum (SMS) decoding algorithm and shuffled belief-propagation (SBP) decoding algorithm. In such a network structure, we can adjust layer arrangement and simplify parameter groups at a specific stage (i.e., training or inference stage) to reduce the unwarranted computational workload. Furthermore, we utilize the branched neuron mean difference (BNMD) to optimize the training targets of the proposed NSMS decoder, which significantly accelerates the convergence speed of the network. Analytical and simulation results show that the proposed NSMS decoder can achieve better performance than the state-of-the-art counterparts in terms of convergence speed, error rate and computational complexity.
引用
收藏
页码:1399 / 1415
页数:17
相关论文
共 49 条
  • [1] [Anonymous], 2021, IEEE Std 802.11ax-2021, P1, DOI [DOI 10.1109/IEEESTD.2021.9363693, DOI 10.1109/IEEESTD.2021.9442429, 10.1109/IEEESTD.2021.9363693]
  • [2] Informed Fixed Scheduling for Faster Convergence of Shuffled Belief-Propagation Decoding
    Aslam, Chaudhry Adnan
    Guan, Yong Liang
    Cai, Kui
    Han, Guojun
    [J]. IEEE COMMUNICATIONS LETTERS, 2017, 21 (01) : 32 - 35
  • [3] Reduced-complexity decoding of LDPC codes
    Chen, JH
    Dholakia, A
    Eleftheriou, E
    Fossorier, MRC
    Hu, XY
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (08) : 1288 - 1299
  • [4] Density evolution for two improved BP-based decoding algorithms of LDPC codes
    Chen, JH
    Fossorier, MPC
    [J]. IEEE COMMUNICATIONS LETTERS, 2002, 6 (05) : 208 - 210
  • [5] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [6] Rate-Adaptive Protograph LDPC Codes for Multi-Level-Cell NAND Flash Memory
    Chen, Pingping
    Cai, Kui
    Zheng, Shi
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (06) : 1112 - 1115
  • [7] On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit
    Chung, SY
    Forney, GD
    Richardson, TJ
    Urbanke, R
    [J]. IEEE COMMUNICATIONS LETTERS, 2001, 5 (02) : 58 - 60
  • [8] Learning to Decode Protograph LDPC Codes
    Dai, Jincheng
    Tan, Kailin
    Si, Zhongwei
    Niu, Kai
    Chen, Mingzhe
    Poor, H. Vincent
    Cui, Shuguang
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 1983 - 1999
  • [9] A New Transceiver Design for Protograph LDPC-Coded LACO-OFDM VLC Systems With Deep Learning
    Dai, Lin
    Fang, Yi
    Chen, Pingping
    Zhang, Guohua
    Guizani, Mohsen
    [J]. IEEE COMMUNICATIONS LETTERS, 2023, 27 (03) : 896 - 900
  • [10] Protograph LDPC-Coded BICM-ID With Irregular CSK Mapping in Visible Light Communication Systems
    Dai, Lin
    Fang, Yi
    Yang, Zhaojie
    Chen, Pingping
    Li, Yonghui
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 11033 - 11038