A type-II MoS2/GaN van der Waals heterostructure with tunable electronic and optical properties based on first principles

被引:0
作者
Chen, Guo-Xiang [1 ]
Zhang, Qi [1 ]
Qu, Wen-Long [1 ]
Zhang, Ling [1 ]
Wang, Dou-Dou [2 ]
Zhang, Jian-Min [3 ]
机构
[1] Xian Shiyou Univ, Coll Sci, Xian 710065, Peoples R China
[2] Xian Univ Sci & Technol, Coll Sci, Xian 710054, Peoples R China
[3] Shaanxi Normal Univ, Coll Phys & Informat Technol, Xian 710062, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2025年 / 42卷
基金
中国国家自然科学基金;
关键词
2D materials; Type-II band alignment; Biaxial strain; Optical properties; TOTAL-ENERGY CALCULATIONS; MOLYBDENUM-DISULFIDE; GAN; 1ST-PRINCIPLES; PERFORMANCE; MONOLAYER;
D O I
10.1016/j.mtcomm.2025.111568
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a MoS2/GaN van der Waals heterostructure (vdWH), the geometric, electronic and optical properties of vdWH are methodically studied using the first-principles calculations. Ab initio molecular dynamics (AIMD), phonon spectrum and elastic constants indicated that A1 configuration is the most stable, with an interlayer distance of 3.01 & Aring;. Through the analysis of the electronic properties of the MoS2/GaN vdWH, it is suggested that the heterostructure exhibits a type-II band alignment, characterized by a direct band gap of 1.33 eV. Furthermore, the MoS2/GaN heterostructure exhibits excellent carrier mobility and anisotropy, which are favorable for photovoltaic and photocatalytic applications. In addition, biaxial strain can effectively tune the band gap and the type-II heterostructure alignment. The heterostructure exhibits both redshift and blueshift in the vertical direction, extending its light absorption range. The light absorption coefficients in the parallel direction are also improved. These results suggest that the MoS2/GaN vdWH offers a broad scope of potential applications in future photovoltaic and optoelectronic nanodevices.
引用
收藏
页数:11
相关论文
共 72 条
  • [1] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in atomically thin Carbon films, Science, 306, pp. 666-669, (2004)
  • [2] Zheng M., Stolz R.M., Mendecki L., Mirica K.A., Electrically-transduced chemical sensors based on two dimensional nanomaterials, Chem. Rev., 119, pp. 478-598, (2019)
  • [3] Demon S., Kamisan A.I., Abdullah N., Noor S., Halim N., Graphene-based materials in gas sensor applications: a review, Sens. Mater., 32, pp. 759-777, (2020)
  • [4] Pan Y., Zhang L.Z., Huang L., Li L.F., Meng L., Gao M., Huan Q., Lin X., Wang Y.L., Du S.X., Freund H.J., Gao H.J., Construction of 2D atomic crystals on transition metal surfaces: graphene, Silicene, Hafnene, Small, 10, pp. 2215-2225, (2014)
  • [5] Liu X.Q., Wu S.Y., Chen X.M., Zhu H.Y., Giant dielectric response in two-dimensional charge-ordered nickelate ceramics, J. Appl. Phys., 104, (2008)
  • [6] Luo W., Zeng J., Chen Y., Dai W., Yao Y., Luo B., Zhang F., Wang T., Surface modification of h-BN and preparation of h-BN/PEI thermally conductive flexible films, Polym. Compos., 43, pp. 3846-3857, (2022)
  • [7] Zhang C.Y., Sun M.L., Altalhi T., Yakobson B.I., Superhard and Superconducting Bilayer Borophene, Materials, 17, (2024)
  • [8] Wang S.K., Tian H.Y., Luo Y., Yu J., Ren C.D., Sun C.L., Xu Y.J., Sun M.L., pp. 1549-1553, (2019)
  • [9] Wang S.F., Wu X.J., First-principles study on electronic and optical properties of graphene-like boron phosphide sheets, Chin. J. Chem. Phys., 28, pp. 588-594, (2015)
  • [10] Khan M.A., Erementchouk M., Hendrickson J., Leuenberger M.N., Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides, Phys. Rev. B, 95, (2017)