A screening method for left ventricular systolic dysfunction by single-channel electrocardiogram using machine learning algorithms

被引:0
|
作者
Kuznetsova, Natalia [1 ]
Suvorov, Alexander [1 ]
Chomakhidze, Petr [1 ]
Kopylov, Philippe [1 ]
机构
[1] IM Sechenov First Moscow State Med Univ, Moscow 119991, Russia
关键词
systolic function; portable ECG monitor; electrocardiogram; machine learning;
D O I
10.1109/COMPSAC61105.2024.00295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background. Analysis of a single-channel electrocardiogram can potentially be used as a screening method to detect systolic dysfunction of the left ventricle. The purpose of our study was to develop a new screening method for detecting a decrease in systolic function of the left ventricle based on single-channel ECG and pulse wave recording using machine learning methods. Materials and methods. The study prospectively included 1039 patients aged 18 years and above. A transthoracic echocardiographic study and 1-minute single channel electrocardiogram were performed for each patient. Spectral analysis of the electrocardiogram based on the Fourier transform. More than 200 parameters were included in machine learning algorithms. Results. For ejection fraction decrease: Lasso regression showed a sensitivity of 92,2%, specificity of 90,1% ( AUC=0.920); Random Forest Classifier sensitivity - 88.2%, specificity - 83,3% (AUC=0.834). Algorithm approbation has shown diagnostic accuracy of 90,1% in left ventricular systolic dysfunction. Conclusions. Machine learning models, based on the single lead ECG parameters, as well as age and gender may simplify screening diagnostics of ejection fraction decrease prior to echocardiographic study for in time heart failure diagnostics with high accuracy.
引用
收藏
页码:1865 / 1867
页数:3
相关论文
共 50 条
  • [11] The epidemiology of "asymptomatic" left ventricular systolic dysfunction: Implications for screening
    Wang, TJ
    Levy, D
    Benjamin, EJ
    Vasan, RS
    ANNALS OF INTERNAL MEDICINE, 2003, 138 (11) : 907 - 916
  • [12] Physicians and Machine-Learning Algorithm Performance in Predicting Left-Ventricular Systolic Dysfunction from a Standard 12-Lead-Electrocardiogram
    Golany, Tomer
    Radinsky, Kira
    Kofman, Natalia
    Litovchik, Ilya
    Young, Revital
    Monayer, Antoinette
    Love, Itamar
    Tziporin, Faina
    Minha, Ido
    Yehuda, Yakir
    Ziv-Baran, Tomer
    Fuchs, Shmuel
    Minha, Sa'ar
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (22)
  • [13] Seizure Detection with Single-Channel EEG using Extreme Learning Machine
    Ammar, Sabrina
    Senouci, Mohamed
    2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, : 776 - 779
  • [14] Community screening for left ventricular systolic dysfunction using plasma and urinary natriuretic peptides
    Ng, LL
    Loke, IW
    Davies, JE
    Geeranavar, S
    Khunti, K
    Stone, MA
    Chin, DT
    Squire, IB
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (07) : 1043 - 1050
  • [15] SINGLE ECHO VIEW DETECTION OF LEFT VENTRICULAR SYSTOLIC DYSFUNCTION
    Rizi, Shekoofeh Saboktakin
    Yeung, Darwin
    Tsang, Teresa
    Tsang, Michael
    Jue, John
    Gin, Kenneth
    Nair, Parvathy
    Luong, Christina
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 1392 - 1392
  • [16] Determination of left ventricular diastolic dysfunction using machine learning methods
    Kuznetsova, N.
    Sagirova, Z. H.
    Dhif, I.
    Gognieva, D.
    Gogiberidze, N.
    Chomakhidze, P.
    Kopylov, P.
    EUROPEAN HEART JOURNAL, 2021, 42 : 3051 - 3051
  • [17] Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General
    Kashou, Anthony H.
    Medina-Inojosa, Jose R.
    Noseworthy, Peter A.
    Rodeheffer, Richard J.
    Lopez-Jimenez, Francisco
    Attia, Itzhak Zachi
    Kapa, Suraj
    Scott, Christopher G.
    Lee, Alexander T.
    Friedman, Paul A.
    McKie, Paul M.
    MAYO CLINIC PROCEEDINGS, 2021, 96 (10) : 2576 - 2586
  • [18] Prediction of moderate left ventricular systolic dysfunction from the 12-lead electrocardiogram
    Aro, A. L.
    Reinier, K.
    Uy-Evanado, A.
    Rusinaru, C.
    Jui, J.
    Chugh, S. S.
    EUROPEAN HEART JOURNAL, 2017, 38 : 902 - 902
  • [19] Automated Classification of Sleep Stages Using Single-Channel EEG: A Machine Learning-Based Method
    Satapathy, Santosh Kumar
    Loganathan, D.
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (02)
  • [20] Early Systolic Dysfunction of Left Ventricular Myocardium is Reflected on Electrocardiogram of Patients With Aortic Stenosis
    Chumakova, O. S.
    Tipteva, T. A.
    Alekhin, M. N.
    Zateyshchikov, D. A.
    KARDIOLOGIYA, 2015, 55 (12) : 42 - 48