Scattering Reduction and Axial Resolution Enhancement in Light-Sheet Fluorescence Microscopy

被引:0
|
作者
Zhang, Yang [1 ,2 ]
Li, Runze [1 ]
Yu, Xianghua [1 ,2 ]
Miao, Hao [1 ,2 ]
Yang, Ruiwen [1 ,2 ]
Li, Xing [1 ,2 ]
Min, Junwei [1 ]
Yang, Yanlong [1 ]
Dan, Dan [1 ]
Dai, Taiqiang [3 ]
Kong, Liang [3 ]
Yao, Baoli [1 ,2 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Ultrafast Opt Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Fourth Mil Med Univ, Natl Clin Res Ctr Oral Dis,Sch Stomatol, State Key Lab Oral & Maxillofacial Reconstruct & R, Shaanxi Clin Res Ctr Oral Dis,Dept Oral & Maxillof, Xian, Peoples R China
关键词
genetic algorithm optimization; light-sheet fluorescence microscopy; wavefront shaping; DEEP;
D O I
10.1002/jbio.202400556
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Light-sheet fluorescence microscopy (LSFM) provides an ideal tool for long-term observation of live specimens due to its low photodamage and fast volumetric imaging speed. The wavefront distortions in the illumination path of LSFM will reduce the intensity and broaden the light-sheet thickness, thereby degrading the image quality. We propose to use the wavefront shaping technique to reduce the scattering effect and shrink the light-sheet thickness. Scanning the refocused laser beam to generate LS improves both the fluorescence intensity and the axial resolution. The axial resolution can be further enhanced by subtracting the two images captured via double scanning the samples with the refocused beam and the uncorrected scattered beam for each slice. The axial resolution is improved from 2.2 +/- 0.3 to 1.5 +/- 0.2 mu m across the field of view of 270 mu m x 270 mu m. The effectiveness of the wavefront shaping subtraction method is demonstrated by imaging fluorescent beads and Aspergillus conidiophores behind a scattering medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] High axial resolution and long field of view for light-sheet fluorescence microscopy via double-beam aperture
    L V Nhu
    Xuanhoi Hoang
    Minhnghia Pham
    Hoanghai Le
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [22] Axial resolution enhancement in light sheet microscopy using mode modulation
    Zhang, Chengfeng
    Chen, Yuchen
    Kuang, Cuifang
    Liu, Xu
    ADVANCED OPTICAL IMAGING TECHNOLOGIES II, 2019, 11186
  • [23] A guide to light-sheet fluorescence microscopy for multiscale imaging
    Rory M Power
    Jan Huisken
    Nature Methods, 2017, 14 : 360 - 373
  • [24] Imaging the Aging Cochlea with Light-Sheet Fluorescence Microscopy
    Santi, Peter A.
    Johnson, Shane B.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (187):
  • [25] Multiple airy beams light-sheet fluorescence microscopy
    Gu, Shuangyu
    Yu, Xianghua
    Bai, Chen
    Min, Junwei
    Li, Runze
    Yang, Yanlong
    Yao, Baoli
    FRONTIERS IN PHYSICS, 2022, 10
  • [26] Light-sheet Fluorescence Microscopy for the Study of the Murine Heart
    Ding, Yichen
    Bailey, Zachary
    Messerschmidt, Victoria
    Nie, Jun
    Bryant, Richard
    Rugonyi, Sandra
    Fei, Peng
    Lee, Juhyun
    Hsiai, Tzung K.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (139):
  • [27] A guide to light-sheet fluorescence microscopy for multiscale imaging
    Power, Rory M.
    Huisken, Jan
    NATURE METHODS, 2017, 14 (04) : 360 - 373
  • [28] Multimodal light-sheet microscopy for fluorescence live imaging
    Oshima, Y.
    Kajiura-Kobayashi, H.
    Nonaka, S.
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XIX, 2012, 8227
  • [29] Three-photon light-sheet fluorescence microscopy
    Escobet-Montalban, Adria
    Gasparoli, Federico M.
    Nylk, Jonathan
    Liu, Pengfei
    Yang, Zhengyi
    Dholakia, Kishan
    OPTICS LETTERS, 2018, 43 (21) : 5484 - 5487
  • [30] Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting
    Gao, Liang
    Zhu, Liren
    Li, Chiye
    Wang, Lihong V.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (93)