Dynamical systems analysis of a reaction-diffusion SIRS model with optimal control for the COVID-19 spread

被引:0
作者
Salman, Amer M. [1 ]
Mohd, Mohd Hafiz [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
关键词
Partial differential equation; reinfection; limited medical resources; optimal control problem; infectious diseases; human disease; LIMITED MEDICAL RESOURCES; EPIDEMIC MODEL; STRATEGIES; INDIA;
D O I
10.1080/10255842.2024.2423879
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We examine an SIRS reaction-diffusion model with local dispersal and spatial heterogeneity to study COVID-19 dynamics. Using the operator semigroup approach, we establish the existence of disease-free equilibrium (DFE) and endemic equilibrium (EE), and derive the basic reproduction number, R0. Simulations show that without dispersal, reinfection and limited medical resources problems can cause a plateau in cases. Dispersal and spatial heterogeneity intensify localised outbreaks, while integrated control strategies (vaccination and treatment) effectively reduce infection numbers and epidemic duration. The possibility of reinfection demonstrates the need for adaptable health measures. These insights can guide optimised control strategies for enhanced public health preparedness.
引用
收藏
页数:18
相关论文
共 54 条
[21]   Constrained optimal control applied to vaccination for influenza [J].
Kim, Jungeun ;
Kwon, Hee-Dae ;
Lee, Jeehyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2313-2329
[22]   Dynamics analysis and optimal control of SIVR epidemic model with incomplete immunity [J].
Liu, Yiming ;
Jian, Shuang ;
Gao, Jianguo .
ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01)
[23]   Interventions targeting non-symptomatic cases can be important to prevent local outbreaks: SARS-CoV-2 as a case study [J].
Lovell-Read, Francesca A. ;
Funk, Sebastian ;
Obolski, Uri ;
Donnelly, Christl A. ;
Thompson, Robin N. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (178)
[24]   Robust optimal control of a network-based SIVS epidemic model with time delay [J].
Lv, Wei ;
He, Hanfei ;
Li, Kezan .
CHAOS SOLITONS & FRACTALS, 2022, 161
[25]   Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks [J].
Lv, Wei ;
Ke, Qing ;
Li, Kezan .
NONLINEAR DYNAMICS, 2020, 99 (02) :1507-1523
[26]   Optimal social distancing through cross-diffusion control for a disease outbreak PDE model [J].
Mehdaoui, Mohamed ;
Lacitignola, Deborah ;
Tilioua, Mouhcine .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
[27]   Optimal control for a multi-group reaction-diffusion SIR model with heterogeneous incidence rates [J].
Mehdaoui, Mohamed ;
Alaoui, Abdesslem Lamrani ;
Tilioua, Mouhcine .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) :1310-1329
[28]  
Mohd M.H., 2019, Dynamical Systems, Bifurcation Analysis and Applications, P117, DOI [10.1007/978-981-32-9832-3_7, DOI 10.1007/978-981-32-9832-3_7]
[29]   Unravelling the myths of R0 in controlling the dynamics of COVID-19 outbreak: A modelling perspective [J].
Mohd, Mohd Hafiz ;
Sulayman, Fatima .
CHAOS SOLITONS & FRACTALS, 2020, 138
[30]   Mathematical model and analysis of the soil-transmitted helminth infections with optimal control [J].
Oguntolu, Festus Abiodun ;
Peter, Olumuyiwa James ;
Yusuf, Abubakar ;
Omede, B. I. ;
Bolarin, G. ;
Ayoola, T. A. .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (01) :883-897