Dynamical systems analysis of a reaction-diffusion SIRS model with optimal control for the COVID-19 spread

被引:0
作者
Salman, Amer M. [1 ]
Mohd, Mohd Hafiz [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
关键词
Partial differential equation; reinfection; limited medical resources; optimal control problem; infectious diseases; human disease; LIMITED MEDICAL RESOURCES; EPIDEMIC MODEL; STRATEGIES; INDIA;
D O I
10.1080/10255842.2024.2423879
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We examine an SIRS reaction-diffusion model with local dispersal and spatial heterogeneity to study COVID-19 dynamics. Using the operator semigroup approach, we establish the existence of disease-free equilibrium (DFE) and endemic equilibrium (EE), and derive the basic reproduction number, R0. Simulations show that without dispersal, reinfection and limited medical resources problems can cause a plateau in cases. Dispersal and spatial heterogeneity intensify localised outbreaks, while integrated control strategies (vaccination and treatment) effectively reduce infection numbers and epidemic duration. The possibility of reinfection demonstrates the need for adaptable health measures. These insights can guide optimised control strategies for enhanced public health preparedness.
引用
收藏
页数:18
相关论文
共 54 条
[1]  
Abidemi A., 2024, Commun Biomath Sci, V7, P1, DOI [10.5614/cbms.2024.7.1.1, DOI 10.5614/CBMS.2024.7.1.1]
[2]  
Abidemi A., 2024, Decis. Anal. J, V10, P100413, DOI [10.1016/j.dajour.2024.100413, DOI 10.1016/J.DAJOUR.2024.100413]
[3]   Mathematical model of COVID-19 in Nigeria with optimal control [J].
Abioye, Adesoye Idowu ;
Peter, Olumuyiwa James ;
Ogunseye, Hammed Abiodun ;
Oguntolu, Festus Abiodun ;
Oshinubi, Kayode ;
Ibrahim, Abdullahi Adinoyi ;
Khan, Ilyas .
RESULTS IN PHYSICS, 2021, 28
[4]  
Brzis H., 2011, Analyse fonctionnelle, thorie et applications
[5]   Hospital surge capacity in a tertiary emergency referral centre during the COVID-19 outbreak in Italy [J].
Carenzo, L. ;
Costantini, E. ;
Greco, M. ;
Barra, F. L. ;
Rendiniello, V. ;
Mainetti, M. ;
Bui, R. ;
Zanella, A. ;
Grasselli, G. ;
Lagioia, M. ;
Protti, A. ;
Cecconi, M. .
ANAESTHESIA, 2020, 75 (07) :928-934
[6]   Optimal control of pattern formations for an SIR reaction-diffusion epidemic model [J].
Chang, Lili ;
Gao, Shupeng ;
Wang, Zhen .
JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
[7]   The potential impact of case-area targeted interventions in response to cholera outbreaks: A modeling study [J].
Finger, Flavio ;
Bertuzzo, Enrico ;
Luquero, Francisco J. ;
Naibei, Nathan ;
Toure, Brahima ;
Allan, Maya ;
Porten, Klaudia ;
Lessler, Justin ;
Rinaldo, Andrea ;
Azman, Andrew S. .
PLOS MEDICINE, 2018, 15 (02)
[8]   Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study [J].
Foy, Brody H. ;
Wahl, Brian ;
Mehta, Kayur ;
Shet, Anita ;
Menon, Gautam, I ;
Britto, Carl .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 103 :431-438
[9]   Targeted Vaccine Allocation Could Increase the COVID-19 Vaccine Benefits Amidst Its Lack of Availability: A Mathematical Modeling Study in Indonesia [J].
Fuady, Ahmad ;
Nuraini, Nuning ;
Sukandar, Kamal K. ;
Lestari, Bony W. .
VACCINES, 2021, 9 (05)
[10]   Bifurcations analysis of a discrete time S I R epidemic model with nonlinear incidence function [J].
George, Reny ;
Gul, Nadia ;
Zeb, Anwar ;
Avazzadeh, Zakieh ;
Djilali, Salih ;
Rezapour, Shahram .
RESULTS IN PHYSICS, 2022, 38