Biomedical document-level relation extraction with thematic capture and localized entity pooling

被引:0
|
作者
Li, Yuqing [1 ]
Shao, Xinhui [1 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Math, Shenyang, Peoples R China
关键词
Document-level relation extraction; Local entity pooling; Thematic capture;
D O I
10.1016/j.jbi.2024.104756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In contrast to sentence-level relational extraction, document-level relation extraction poses greater challenges as a document typically contains multiple entities, and one entity may be associated with multiple other entities. Existing methods often rely on graph structures to capture path representations between entity pairs. However, this paper introduces a novel approach called local entity pooling that solely relies on the pre- training model to identify the bridge entity related to the current entity pair and generate the reasoning path representation. This technique effectively mitigates the multi-entity problem. Additionally, the model leverages the multi-entity and multi-label characteristics of the document to acquire the document's thematic representation, thereby enhancing the document-level relation extraction task. Experimental evaluations conducted on two biomedical datasets, CDR and GDA. Our TCLEP (Thematic C apture and L ocalized E ntity P ooling) model achieved the Macro-F1 scores of 71.7% and 85.3%, respectively. Simultaneously, we incorporated local entity pooling and thematic capture modules into the state-of-the-art model, resulting in performance improvements of 1.5% and 0.2% on the respective datasets. These results highlight the advanced performance of our proposed approach.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Document-Level Relation Extraction with a Dependency Syntax Transformer and Supervised Contrastive Learning
    Yang, Ming
    Zhang, Yijia
    Banbhrani, Santosh Kumar
    Lin, Hongfei
    Lu, Mingyu
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE GRAPH EMPOWERS THE DIGITAL ECONOMY, CCKS 2022, 2022, 1669 : 43 - 54
  • [32] Self-supervised commonsense knowledge learning for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [33] Enhancing Document-Level Relation Extraction with Attention-Convolutional Hybrid Networks and Evidence Extraction
    Zhang, Feiyu
    Hu, Ruiming
    Duan, Guiduo
    Huang, Tianxi
    COGNITIVE COMPUTATION, 2024, : 1113 - 1124
  • [34] Document-Level Relation Extraction Based on Fine-Grained Information Guidance
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 378 - 390
  • [35] NA-Aware Machine Reading Comprehension for Document-Level Relation Extraction
    Zhang, Zhenyu
    Yu, Bowen
    Shu, Xiaobo
    Liu, Tingwen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 580 - 595
  • [36] Refining ChatGPT for Document-Level Relation Extraction: A Multi-dimensional Prompting Approach
    Zhu, Weiran
    Wang, Xinzhi
    Chen, Xue
    Luo, Xiangfeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 190 - 201
  • [37] SaGCN: Structure-Aware Graph Convolution Network for Document-Level Relation Extraction
    Yang, Shuangji
    Zhang, Taolin
    Su, Danning
    Hu, Nan
    Nong, Wei
    He, Xiaofeng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 377 - 389
  • [38] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18) : 15429 - 15439
  • [39] Graph neural networks with selective attention and path reasoning for document-level relation extraction
    Hang, Tingting
    Feng, Jun
    Wang, Yunfeng
    Yan, Le
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5353 - 5372
  • [40] Feature-Enhanced Document-Level Relation Extraction in Threat Intelligence with Knowledge Distillation
    Li, Yongfei
    Guo, Yuanbo
    Fang, Chen
    Hu, Yongjin
    Liu, Yingze
    Chen, Qingli
    ELECTRONICS, 2022, 11 (22)