Resilience Assessment of Tomato Crop Chlorophyll Fluorescence Against Water Stress Under Elevated CO2 and Protective Cultivation

被引:0
|
作者
Akhlaq, Muhammad [1 ,2 ]
Miao, Henglu [3 ,4 ]
Zhang, Chuan [1 ]
Yan, Haofang [5 ]
Run, Xue [1 ]
Chauhdary, Junaid Nawaz [5 ]
Rehman, Muhammad Mahmood ur [1 ]
Li, Jun [1 ]
Ren, Jiangtao [1 ]
机构
[1] Jiangsu Univ, Sch Agr Engn, Zhenjiang, Peoples R China
[2] PMAS Arid Agr Univ, Fac Agr Engn & Technol, Rawalpindi, Pakistan
[3] China Inst Water Resources & Hydropower Res, Yinshanbeilu Grassland Ecohydrol Natl Observat & R, Beijing, Peoples R China
[4] Inst Pastoral Hydraul Res, MWR, Hohhot, Peoples R China
[5] Jiangsu Univ, Res Ctr Fluid Machinery Engn & Technol, Zhenjiang, Peoples R China
关键词
chlorophyll fluorescence; elevated CO2; irrigation regimes; tomato; PHOTOSYNTHETIC ELECTRON-TRANSPORT; DROUGHT STRESS; REDOX STATE; GROWTH; LEAVES; YIELD; ACCLIMATION; ENRICHMENT; PARAMETERS; RESPONSES;
D O I
10.1002/ird.3079
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water scarcity is a crucial issue that reduces plant growth and yield worldwide. Chlorophyll fluorescence parameters, which are associated with plant growth and yield under water stress, are the most sensitive plant parameters. The mitigation of water stress by elevated CO2 (e[CO2]) by chlorophyll fluorescence for tomato growth is rare. Tomato plants were grown in a controlled environment chambers (CECs) under eight treatments under controlled environmental conditions for two growing seasons: autumn-winter (AW) 2021 and spring-summer (SS) 2022. The four irrigation regimes included 40%-50% soil water holding capacity (WHC) (I-1), 60%-70% WHC (I-2), 80%-90% WHC (I-3) and 100% WHC (I-4). Eight treatments of four irrigation regimes coupled with e[CO2] (700 mu mol<middle dot>mol(-1)) and ambient CO2 (a[CO2], 500 mu mol<middle dot>mol(-1)) were designed, respectively: I(1)e[CO2], I(2)e[CO2], I(3)e[CO2], I(4)e[CO2], I(1)a[CO2], I(2)a[CO2], I(3)a[CO2] and I(4)a[CO2], where I(4)a[CO2] was considered the control treatment (CK). The chlorophyll fluorescence parameters maximum photochemical efficiency of PSII (F-v/F-m), photochemical efficiency of PSII (& Fcy;(PSII)), electron transport rate (ETR) and photochemical quenching (qP) significantly decreased, whereas nonphotochemical quenching (NPQ) significantly increased under drought stress. Compared with that under CK, the maximum reduction in F-v/F-m under I(1)a[CO2] was 14% in AW 2021, whereas it was 19% in SS 2022. The & Fcy;(PSII) was reduced by 13%-3% and 13%-6% under I(1)a[CO2] in AW 2021 and SS 2022, respectively (under the fixed photosynthetically active radiation range of 125-625 mu mol<middle dot>m(-2)<middle dot>s(-1)) compared with that in the CK. The ETR and qP decreased under I(1)a[CO2] at their maximum level in AW 2021 and SS 2022 with respect to those in the CK. The results showed that e[CO2] mitigated water stress as the F-v/F-m, & Fcy;(PSII), ETR and qP were increased under water stress coupled with e[CO2]. I(1)e[CO2] was the most influential treatment for chlorophyll fluorescence parameters assessed via principal component analysis (PCA) in AW 2021 and SS 2022. This study explained the approach to develop crop resilience against water stress by inducing e[CO2], which will play a vital role in sustainable agriculture under drought stress.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
    Sigut, Ladislav
    Holisova, Petra
    Klem, Karel
    Sprtova, Mirka
    Calfapietra, Carlo
    Marek, Michal V.
    Spunda, Vladimir
    Urban, Otmar
    ANNALS OF BOTANY, 2015, 116 (06) : 929 - 939
  • [22] Field phenotyping of ten wheat cultivars under elevated CO2 shows seasonal differences in chlorophyll fluorescence, plant height and vegetation indices
    Knopf, Oliver
    Castro, Antony
    Bendig, Juliane
    Pude, Ralf
    Kleist, Einhard
    Poorter, Hendrik
    Rascher, Uwe
    Muller, Onno
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [23] Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides
    Nabity, Paul D.
    Hillstrom, Michael L.
    Lindroth, Richard L.
    DeLucia, Evan H.
    OECOLOGIA, 2012, 169 (04) : 905 - 913
  • [24] Can the Chlorophyll-a Fluorescence be Useful in Identifying Acclimated Young Plants from Two Populations of Cecropia Pachystachya Trec. (Urticaceae), Under Elevated CO2 Concentrations?
    Santiago, E. F.
    Larentis, T. C.
    Barbosa, V. M.
    Caires, A. R. L.
    Morais, G. A.
    Suarez, Y. R.
    JOURNAL OF FLUORESCENCE, 2015, 25 (01) : 49 - 57
  • [25] Effects of Exogenous Spermidine and Elevated CO2 on Physiological and Biochemical Changes in Tomato Plants Under Iso-osmotic Salt Stress
    Zhang Yi
    Shuo Li
    Ying Liang
    Hailiang Zhao
    Leiping Hou
    Shi Yu
    Golam Jalal Ahammed
    Journal of Plant Growth Regulation, 2018, 37 : 1222 - 1234
  • [26] Investigating photosynthetic and chlorophyll fluorescence responses to light in peanut acclimated to elevated CO2 and temperature
    Rajanna G. Adireddy
    Saseendran S. Anapalli
    Christopher D. Delhom
    Naveen Puppala
    Krishna N. Reddy
    Photosynthesis Research, 2025, 163 (3)
  • [27] Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2
    Keutgen, N
    Chen, K
    JOURNAL OF PLANT PHYSIOLOGY, 2001, 158 (10) : 1307 - 1316
  • [28] Hyperspectral Estimation Models of Winter Wheat Chlorophyll Content Under Elevated CO2
    Cai, Yao
    Miao, Yuxuan
    Wu, Hao
    Wang, Dan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [29] EFFECTS OF ELEVATED CO2 AND WATER STRESS ON ROOT STRUCTURE AND HYDRAULIC CONDUCTANCE OF SOLANUM MELONGENA L.
    Sarker, Bikash C.
    Hara, Michihiro
    BANGLADESH JOURNAL OF BOTANY, 2009, 38 (01): : 55 - 63
  • [30] Modelling stomatal conductance of wheat: An assessment of response relationships under elevated CO2
    Houshmandfar, Alireza
    Fitzgerald, Glenn J.
    Armstrong, Roger
    Macabuhay, Allene A.
    Tausz, Michael
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 214 : 117 - 123