High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach

被引:1
作者
Anand, Archit [1 ]
Kumari, Priyanka [1 ]
Kalyani, Ajay Kumar [1 ]
机构
[1] Indian Inst Technol Patna, Electroceram Lab, Met & Mat Engn, Patna 801103, Bihar, India
关键词
Piezoelectrics; Perovskite; Machine learning; Knowledge Graph; CRYSTAL-STRUCTURE; PHASE-TRANSITIONS; ABI(4)TI(4)O(15); MOLECULES; NETWORKS; SR; BA;
D O I
10.1016/j.commatsci.2024.113445
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational methods, such as the Density Functional Theory (DFT), have long been a reliable tool for predicting material properties. However, their use in high-throughput screening has been limited due to computational costs. In this paper, we present a graph-based machine learning (ML) framework that overcomes these limitations, offering a more efficient approach to material selection and property prediction. Our framework, which includes a knowledge graph (KG) approach, and a graph neural network (GNN) based model, significantly reduces the search space by filtering materials from the Crystallography Open Database (COD) using KGs. We then use a modified Gated Graph ConvNet (GatedGCN) model to predict the maximum longitudinal piezoelectric modulus (& Vert;e(ij)& Vert;(max)) of the screened materials. Based on the study, a list of new perovskite-based piezoelectric materials is shown with the top candidate reaching a value of & Vert;e(ij)& Vert;(max) as high as similar to 10.81 C/m(2).
引用
收藏
页数:10
相关论文
共 77 条
[1]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[2]  
Barrasa Jesus, 2023, Building knowledge graphs: a practitioner's guide, P277
[3]   Emerging materials intelligence ecosystems propelled by machine learning [J].
Batra, Rohit ;
Song, Le ;
Ramprasad, Rampi .
NATURE REVIEWS MATERIALS, 2021, 6 (08) :655-678
[4]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[5]   THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE [J].
BERGERHOFF, G ;
HUNDT, R ;
SIEVERS, R ;
BROWN, ID .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02) :66-69
[6]   A pure bismuth a site polar perovskite synthesized at ambient pressure [J].
Bridges, Craig A. ;
Allix, Mathieu ;
Suchomel, Matthew R. ;
Kuang, Xiaojun ;
Sterianou, Iasmi ;
Sinclair, Derek C. ;
Rosseinsky, Matthew J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (46) :8785-8789
[7]   Open Catalyst 2020 (OC20) Dataset and Community Challenges [J].
Chanussot, Lowik ;
Das, Abhishek ;
Goyal, Siddharth ;
Lavril, Thibaut ;
Shuaibi, Muhammed ;
Riviere, Morgane ;
Tran, Kevin ;
Heras-Domingo, Javier ;
Ho, Caleb ;
Hu, Weihua ;
Palizhati, Aini ;
Sriram, Anuroop ;
Wood, Brandon ;
Yoon, Junwoong ;
Parikh, Devi ;
Zitnick, C. Lawrence ;
Ulissi, Zachary .
ACS CATALYSIS, 2021, 11 (10) :6059-6072
[8]   A Critical Review of Machine Learning of Energy Materials [J].
Chen, Chi ;
Zuo, Yunxing ;
Ye, Weike ;
Li, Xiangguo ;
Deng, Zhi ;
Ong, Shyue Ping .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[9]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[10]   Atomistic Line Graph Neural Network for improved materials property predictions [J].
Choudhary, Kamal ;
DeCost, Brian .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)