With the advent of the intelligent robotics era, there is an increasing demand for a variety of image sensors and camera modules to meet the needs of various applications. At the same time, demand is growing for performance such as ultra-compact size, low-power operation, and hardware-level object recognition that is difficult to achieve with existing cameras. The superior structures and functionalities of natural eyes, including those of humans and other animals, provide significant inspiration for the development of next-generation artificial vision systems. In particular, the unique characteristics of animal eyes, which have evolved ecologically to adapt to specific habitats and environments, exhibit functionalities beyond those found in conventional cameras. Consequently, research aiming to mimic these natural optical systems has become very active. Bioinspired cameras can generally be categorized into lens optics, image sensors, nanophotonic structures, and neuron/synapse mimics. Recently, there have been attempts to integrate all these components into a complete vision system. This review aims to trace trends in bioinspired cameras, focusing not on the technical aspects of individual components but on overall directions in technological advancement.