INVERSE-FREE NEWTON'S METHOD

被引:0
作者
Massalski, Marcin [1 ]
Nockowska-Rosiak, Magdalena [1 ]
机构
[1] Lodz Univ Technol, Inst Math, al Politech 8, PL-93590 Lodz, Poland
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2025年 / 15卷 / 04期
关键词
Newton's method; at least quadratic convergence; approximate inverse; NONLINEAR EQUATIONS; ITERATIVE METHOD; MATRIX;
D O I
10.11948/20240428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a modification of Newton's method for finding a zero of a multivariable function without an inverse of a matrix in a recurrence. The aim of this paper is twofold: demonstrating at least quadratic convergence of a Newton-type method avoiding matrix inversion under standard assumptions, and then comparing modified and classical Newton's methods numerically.
引用
收藏
页码:2238 / 2257
页数:20
相关论文
共 35 条
  • [1] Hybrid Newton-like Inverse Free Algorithms for Solving Nonlinear Equations
    Argyros, Ioannis K.
    George, Santhosh
    Regmi, Samundra
    Argyros, Christopher I.
    [J]. ALGORITHMS, 2024, 17 (04)
  • [2] Asymptotically Newton-Type Methods without Inverses for Solving Equations
    Argyros, Ioannis K.
    George, Santhosh
    Shakhno, Stepan
    Regmi, Samundra
    Havdiak, Mykhailo
    Argyros, Michael I.
    [J]. MATHEMATICS, 2024, 12 (07)
  • [3] Newton's Method Without Division
    Blanchard, Jeffrey D.
    Chamberland, Marc
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (07) : 606 - 617
  • [4] Bohner M., 2001, DYNAMIC EQUATIONS TI, DOI DOI 10.1007/978-1-4612-0201-1
  • [5] BROYDEN CG, 1965, MATH COMPUT, V19, P557
  • [6] Iterative methods improving Newton's method by the decomposition method
    Chun, C
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) : 1559 - 1568
  • [7] Variants of Newton's Method using fifth-order quadrature formulas
    Cordero, A.
    Torregrosa, Juan R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 686 - 698
  • [8] NEWTON-ANDERSON AT SINGULAR POINTS
    Dallas, Matt
    Pollock, Sara
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (05) : 667 - 692
  • [9] EXPANDED CONVERGENCE DOMAINS FOR NEWTON METHOD AT NEARLY SINGULAR ROOTS
    DECKER, DW
    KELLEY, CT
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04): : 951 - 966
  • [10] ON SOLVING NONLINEAR EQUATIONS WITH SIMPLE SINGULARITIES OR NEARLY SINGULAR SOLUTIONS
    GRIEWANK, A
    [J]. SIAM REVIEW, 1985, 27 (04) : 537 - 563