Lp regularity of the Bergman projection on the symmetrized polydisc

被引:1
作者
Huo, Zhenghui [1 ]
Wick, Brett D. [2 ]
机构
[1] Duke Kunshan Univ, Zu Chongzhi Ctr Math & Computat Sci, Kunshan, Jiangsu, Peoples R China
[2] Washington Univ St Louis, Dept Math, St Louis, MO USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年
基金
美国国家科学基金会;
关键词
Bergman projection; Bergman kernel; symmetrized polydisc; SZEGO PROJECTIONS; DOMAINS; MAPPINGS; KERNELS;
D O I
10.4153/S0008414X24000634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the L-p regularity of the Bergman projection P over the symmetrized polydisc in Cn. We give a decomposition of the Bergman projection on the polydisc and obtain an operator equivalent to the Bergman projection over antisymmetric function spaces. Using it, we obtain the Lp irregularity of P for p=2n/n-1 which also implies that P is L-p bounded if and only if p is an element of(2n/n+1, 2n/ n-1).
引用
收藏
页数:26
相关论文
共 37 条
[1]   The hyperbolic geometry of the symmetrized bidisc [J].
Agler, J ;
Young, NJ .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :375-403
[2]   Operators having the symmetrized bidisc as a spectral set [J].
Agler, J ;
Young, NJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 :195-210
[3]   Algebraic and geometric aspects of rational Γ-inner functions [J].
Agler, Jim ;
Lykova, Zinaida A. ;
Young, N. J. .
ADVANCES IN MATHEMATICS, 2018, 328 :133-159
[4]   Irregularity of the Bergman Projection on Worm Domains in Cn [J].
Barrett, David ;
Sahutoglu, Soenmez .
MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) :187-198
[5]  
Bekolle David, 1978, CR ACAD SCI PARIS A, V286, pA775
[6]   PROPER HOLOMORPHIC MAPPINGS AND THE BERGMAN PROJECTION [J].
BELL, SR .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) :167-175
[7]   Lp-regularity of the Bergman projection on quotient domains [J].
Bender, Chase ;
Chakrabarti, Debraj ;
Edholm, Luke ;
Mainkar, Meera .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (03) :732-772
[8]   Lp MAPPING PROPERTIES OF THE BERGMAN PROJECTION ON THE HARTOGS TRIANGLE [J].
Chakrabarti, Debraj ;
Zeytuncu, Yunus E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) :1643-1653
[9]   Estimates for the Bergman and Szego projections for pseudoconvex domains of finite type with locally diagonalizable Levi form [J].
Charpentier, Philippe ;
Dupain, Yves .
PUBLICACIONS MATEMATIQUES, 2006, 50 (02) :413-446
[10]   Bergman Projection on the Symmetrized Bidisk [J].
Chen, Liwei ;
Jin, Muzhi ;
Yuan, Yuan .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)