Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement

被引:0
|
作者
Wu, Wenhui [1 ,2 ]
Weng, Jian [1 ]
Zhang, Pingping [3 ]
Wang, Xu [1 ]
Yang, Wenhan [4 ]
Jiang, Jianmin [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518066, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Reflectivity; Optimization; Adaptation models; Learning systems; Image color analysis; Noise reduction; Image restoration; Image enhancement; Electronic mail; Low-light image enhancement; Retinex theory; unfolding optimization; FRAMEWORK; ALGORITHM;
D O I
10.1109/TPAMI.2024.3524538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.
引用
收藏
页码:2545 / 2562
页数:18
相关论文
共 50 条
  • [31] RECURRENT ATTENTIVE DECOMPOSITION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Gao, Haoyu
    Zhang, Lin
    Zhang, Shunli
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3818 - 3822
  • [32] Low-Light Image Enhancement Using a Simple Network Structure
    Matsui, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 65507 - 65516
  • [33] Feature spatial pyramid network for low-light image enhancement
    Song, Xijuan
    Huang, Jijiang
    Cao, Jianzhong
    Song, Dawei
    VISUAL COMPUTER, 2023, 39 (01): : 489 - 499
  • [34] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [35] Channel splitting attention network for low-light image enhancement
    Lu, Bibo
    Pang, Zebang
    Gu, Yanan
    Zheng, Yanmei
    IET IMAGE PROCESSING, 2022, 16 (05) : 1403 - 1414
  • [36] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898
  • [37] ATTENTION-BASED NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Cheng
    Yan, Qingsen
    Zhu, Yu
    Li, Xianjun
    Sun, Jinqiu
    Zhang, Yanning
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [38] FRN: Fusion and recalibration network for low-light image enhancement
    Kavinder Singh
    Ashutosh Pandey
    Akshat Agarwal
    Mohit Kumar Agarwal
    Aditya Shankar
    Anil Singh Parihar
    Multimedia Tools and Applications, 2024, 83 : 12235 - 12252
  • [39] A Transformer Network Combing CBAM for Low-Light Image Enhancement
    Sun, Zhefeng
    Wang, Chen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 5205 - 5220
  • [40] LLCNN: A Convolutional Neural Network for Low-light Image Enhancement
    Tao, Li
    Zhu, Chuang
    Xiang, Guoqing
    Li, Yuan
    Jia, Huizhu
    Xie, Xiaodong
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,