Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement

被引:0
|
作者
Wu, Wenhui [1 ,2 ]
Weng, Jian [1 ]
Zhang, Pingping [3 ]
Wang, Xu [1 ]
Yang, Wenhan [4 ]
Jiang, Jianmin [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518066, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Reflectivity; Optimization; Adaptation models; Learning systems; Image color analysis; Noise reduction; Image restoration; Image enhancement; Electronic mail; Low-light image enhancement; Retinex theory; unfolding optimization; FRAMEWORK; ALGORITHM;
D O I
10.1109/TPAMI.2024.3524538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.
引用
收藏
页码:2545 / 2562
页数:18
相关论文
共 50 条
  • [21] DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
    Jiang, Yonglong
    Li, Liangliang
    Zhu, Jiahe
    Xue, Yuan
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (04): : 743 - 753
  • [22] Low-light Image Enhancement via Layer Decomposition and Optimization
    Xue Ying
    Zhou Pucheng
    Xue Mogen
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [23] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [24] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [25] Adaptive lightweight Transformer network for low-light image enhancement
    Meng, De
    Lei, Zhichun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5365 - 5375
  • [26] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [27] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [28] Frequency-aware network for low-light image enhancement
    Shang, Kai
    Shao, Mingwen
    Qiao, Yuanjian
    Liu, Huan
    COMPUTERS & GRAPHICS-UK, 2024, 118 : 210 - 219
  • [29] Adversarial Context Aggregation Network for Low-Light Image Enhancement
    Shin, Yong-Goo
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Ko, Sung-Jea
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 617 - 621
  • [30] A deep Retinex network for underwater low-light image enhancement
    Kai Ji
    Weimin Lei
    Wei Zhang
    Machine Vision and Applications, 2023, 34