Engineering the Catalytic Superlattices for Highly Reversible Sodium-Ion Storage with A high Compositional Conversion Degree

被引:0
|
作者
Wang, Jingyi [1 ,2 ]
Liu, Tongfeng [1 ,2 ]
Chen, Biao [1 ,2 ,3 ,4 ]
Qi, Zijia [1 ,2 ]
Xie, Haonan [1 ,2 ]
Wu, Guangxuan [1 ,2 ]
Xiao, Liyang [1 ,2 ]
Zhou, Jingwen [5 ]
Ma, Liying [1 ,2 ]
He, Fang [1 ,2 ]
He, Chunnian [1 ,2 ,3 ,4 ,6 ]
Hu, Wenbin [1 ,2 ,3 ,4 ,6 ]
Zhao, Naiqin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Natl Ind Educ Platform Energy Storage, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[4] Tianjin Univ, State Key Lab Precious Met Funct Mat, Tianjin 300350, Peoples R China
[5] Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[6] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Binhai New City 350207, Fuzhou, Peoples R China
关键词
Transition metal disulfides; interface stacking; superlattice material; reversible conversion; sodium-ion batteries; MOS2; NANOSHEETS; DOPED GRAPHENE; LAYER MOS2; CARBON; INTERCALATION; TRANSITION; HYBRID;
D O I
10.1002/anie.202425063
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major obstacle of transition metal disulfides in sodium-ion batteries is compositional irreversible conversion, leading to fast capacity decay. Here, we propose to engineer a catalytic superlattice structure for achieving a record-high compositional reversible conversion degree (approximate to 100 %). The superlattice is constructed by alternately stacking MoS2 layers and nitrogen/oxygen co-doped reduced graphene oxide-supported single-atom metal layers (MoS2/M-ONG SL, M=Fe, Co, Ni, Cu, Zn) with 100 % MoS2/M-ONG interfaces, in which the metal atoms bridge the two layers through S-M-O chemical bonds. Using MoS2/Co-ONG SL as a model, the unique superlattice structure shows excellent electron and Na+ transport properties during discharge and charge. Moreover, the Co-ONG boosts Na2S adsorption and decomposition by forming Co-3d and S-3p hybridization. As a result, the MoS2/Co-ONG SL shows a high compositional reversible conversion degree(approximate to 100 %), as proven by a series of in-/ex situ spectroscopic analyses. As a result, the MoS2/Co-ONG SL exhibits a stable cycling stability of 300.7 mAh g-1 after 2000 cycles at 2 A g-1, with an ultrasmall capacity decay rate of 0.41 % per 100 cycles. This work offers a noteworthy perspective on the design and fabrication of conversion-type materials, emphasizing the crucial role of interface engineering in achieving excellent bidirectional reaction kinetics.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Transformative Catalytic Carbon Conversion Enabling Superior Graphitization and Nanopore Engineering in Hard Carbon Anodes for Sodium-Ion Batteries
    Zhang, Guilai
    Gao, Hong
    Zhang, Dingyi
    Xiao, Jun
    Sun, Limeng
    Li, Jiayi
    Li, Congcong
    Sun, Yiwen
    Yuan, Xinyao
    Huang, Peng
    Xu, Yi
    Guo, Xin
    Zhao, Yufei
    Wang, Yong
    Xiao, Yao
    Wang, Guoxiu
    Liu, Hao
    CARBON ENERGY, 2025,
  • [22] Highly Reversible Sodium-ion Storage in A Bifunctional Nanoreactor Based on Single-atom Mn Supported on N-doped Carbon over MoS2 Nanosheets
    Sui, Simi
    Xie, Haonan
    Chen, Biao
    Wang, Tianshuai
    Qi, Zijia
    Wang, Jingyi
    Sha, Junwei
    Liu, Enzuo
    Zhu, Shan
    Lei, Kaixiang
    Zheng, Shijian
    Zhou, Guangmin
    He, Chunnian
    Hu, Wenbin
    He, Fang
    Zhao, Naiqin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (43)
  • [23] Defect and interlayer spacing engineering of vanadium selenide for boosting sodium-ion storage
    Feng, Wang
    Wen, Xia
    Peng, Yanan
    Song, Luying
    Li, Xiaohui
    Du, Ruofan
    Yang, Junbo
    Jiang, Yulin
    Li, Hui
    Sun, Hang
    Huang, Ling
    He, Jun
    Shi, Jianping
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 748 - 757
  • [24] Binder-Induced Ultrathin SEI for Defect-Passivated Hard Carbon Enables Highly Reversible Sodium-Ion Storage
    Li, Wenbin
    Guo, Xiaoniu
    Song, Keming
    Chen, Jiacheng
    Zhang, Jiyu
    Tang, Guochuan
    Liu, Chuntai
    Chen, Weihua
    Shen, Changyu
    ADVANCED ENERGY MATERIALS, 2023, 13 (22)
  • [25] The Safety Engineering of Sodium-Ion Batteries Used as an Energy Storage System for the Military
    Iwan, Agnieszka
    Bogdanowicz, Krzysztof A.
    Pich, Robert
    Gonciarz, Agnieszka
    Miedziak, Jacek
    Plebankiewicz, Ireneusz
    Przybyl, Wojciech
    ENERGIES, 2025, 18 (04)
  • [26] Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors
    Luo, Jianmin
    Fang, Cong
    Jin, Chengbin
    Yuan, Huadong
    Sheng, Ouwei
    Fang, Ruyi
    Zhang, Wenkui
    Huang, Hui
    Gan, Yongping
    Xia, Yang
    Liang, Chu
    Zhang, Jun
    Li, Weiyang
    Tao, Xinyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7794 - 7806
  • [27] Interface engineering of MoS2-based ternary hybrids towards reversible conversion of sodium storage
    Liu, Chunyang
    Xie, Haonan
    Sui, Simi
    Chen, Biao
    Ma, Liying
    Liu, Enzuo
    Zhao, Naiqin
    MATERIALS TODAY ENERGY, 2022, 26
  • [28] 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage
    Zhang, Peng
    Soomro, Razium A.
    Guan, Zhaoruxin
    Sun, Ning
    Xu, Bin
    ENERGY STORAGE MATERIALS, 2020, 29 : 163 - 171
  • [29] Highly Porous NiCoSe4 Microspheres as High-Performance Anode Materials for Sodium-Ion Batteries
    Huang, Xiaolian
    Men, Shuang
    Zheng, Hui
    Qin, Dong-Dong
    Kang, Xiongwu
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (09) : 1456 - 1463
  • [30] Defect Engineering in Prussian Blue Analogs for High-Performance Sodium-Ion Batteries
    Liu, Xinyi
    Cao, Yu
    Sun, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)