Engineering the Catalytic Superlattices for Highly Reversible Sodium-Ion Storage with A high Compositional Conversion Degree

被引:0
|
作者
Wang, Jingyi [1 ,2 ]
Liu, Tongfeng [1 ,2 ]
Chen, Biao [1 ,2 ,3 ,4 ]
Qi, Zijia [1 ,2 ]
Xie, Haonan [1 ,2 ]
Wu, Guangxuan [1 ,2 ]
Xiao, Liyang [1 ,2 ]
Zhou, Jingwen [5 ]
Ma, Liying [1 ,2 ]
He, Fang [1 ,2 ]
He, Chunnian [1 ,2 ,3 ,4 ,6 ]
Hu, Wenbin [1 ,2 ,3 ,4 ,6 ]
Zhao, Naiqin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Natl Ind Educ Platform Energy Storage, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[4] Tianjin Univ, State Key Lab Precious Met Funct Mat, Tianjin 300350, Peoples R China
[5] Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[6] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Binhai New City 350207, Fuzhou, Peoples R China
关键词
Transition metal disulfides; interface stacking; superlattice material; reversible conversion; sodium-ion batteries; MOS2; NANOSHEETS; DOPED GRAPHENE; LAYER MOS2; CARBON; INTERCALATION; TRANSITION; HYBRID;
D O I
10.1002/anie.202425063
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major obstacle of transition metal disulfides in sodium-ion batteries is compositional irreversible conversion, leading to fast capacity decay. Here, we propose to engineer a catalytic superlattice structure for achieving a record-high compositional reversible conversion degree (approximate to 100 %). The superlattice is constructed by alternately stacking MoS2 layers and nitrogen/oxygen co-doped reduced graphene oxide-supported single-atom metal layers (MoS2/M-ONG SL, M=Fe, Co, Ni, Cu, Zn) with 100 % MoS2/M-ONG interfaces, in which the metal atoms bridge the two layers through S-M-O chemical bonds. Using MoS2/Co-ONG SL as a model, the unique superlattice structure shows excellent electron and Na+ transport properties during discharge and charge. Moreover, the Co-ONG boosts Na2S adsorption and decomposition by forming Co-3d and S-3p hybridization. As a result, the MoS2/Co-ONG SL shows a high compositional reversible conversion degree(approximate to 100 %), as proven by a series of in-/ex situ spectroscopic analyses. As a result, the MoS2/Co-ONG SL exhibits a stable cycling stability of 300.7 mAh g-1 after 2000 cycles at 2 A g-1, with an ultrasmall capacity decay rate of 0.41 % per 100 cycles. This work offers a noteworthy perspective on the design and fabrication of conversion-type materials, emphasizing the crucial role of interface engineering in achieving excellent bidirectional reaction kinetics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Micro-MoS2 with Excellent Reversible Sodium-Ion Storage
    Wang, Xuefeng
    Li, Yejing
    Guan, Zhaoruxin
    Wang, Zhaoxiang
    Chen, Liquan
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (17) : 6465 - 6468
  • [2] Engineering the interfacial doping of 2D heterostructures with good bidirectional reaction kinetics for durably reversible sodium-ion batteries
    Xie, Haonan
    Chen, Biao
    Liu, Chunyang
    Wu, Guangxuan
    Sui, Simi
    Liu, Enzuo
    Zhou, Guangmin
    He, Chunnian
    Hu, Wenbin
    Zhao, Naiqin
    ENERGY STORAGE MATERIALS, 2023, 60
  • [3] Architecting Braided Porous Carbon Fibers Based on High-Density Catalytic Crystal Planes to Achieve Highly Reversible Sodium-Ion Storage
    Li, Chuanqi
    Zhang, Zhijia
    Chen, Yuefang
    Xu, Xiaoguang
    Zhang, Mengmeng
    Kang, Jianli
    Liang, Rui
    Chen, Guoxin
    Lu, Huanming
    Yu, Zhenyang
    Li, Wei-Jie
    Wang, Nan
    Huang, Qin
    Zhang, Delin
    Chou, Shu-Lei
    Jiang, Yong
    ADVANCED SCIENCE, 2022, 9 (18)
  • [4] Planar NiC3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries
    Zhu, Changyan
    Qu, Xin
    Zhang, Min
    Wang, Jianyun
    Li, Quan
    Geng, Yun
    Ma, Yanming
    Su, Zhongmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (21) : 13356 - 13363
  • [5] Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage
    Huang, Haijian
    Wei, Li
    Tian, Tian
    Cao, Taoding
    Cheng, Feng
    Chen, Zhangxian
    Yang, Zeheng
    Ge, Binghui
    Tian, Mingliang
    Zhang, Weixin
    Niederberger, Markus
    ENERGY STORAGE MATERIALS, 2022, 47 : 579 - 590
  • [6] Highly Reversible Sodium-ion Storage in NaTi2(PO4)3/C Composite Nanofibers
    Li, Min
    Liu, Li
    Wang, Peiqi
    Li, Jiangyu
    Leng, Qianyi
    Cao, Guozhong
    ELECTROCHIMICA ACTA, 2017, 252 : 523 - 531
  • [7] Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodium-Ion Storage
    Tan, Shuangshuang
    Jiang, Yalong
    Wei, Qiulong
    Huang, Qianming
    Dai, Yuhang
    Xiong, Fangyu
    Li, Qidong
    An, Qinyou
    Xu, Xu
    Zhu, Zizhong
    Bai, Xuedong
    Mai, Liqiang
    ADVANCED MATERIALS, 2018, 30 (18)
  • [8] Trace sulfurization engineering enabling improved initial coulombic efficiency and high reversible sodium-ion storage in bismuth-based anode
    Chen, Ruijie
    Qiu, Xiaoling
    Luo, Keren
    Zhong, Zhiqiang
    Wang, Xiaoran
    Fu, Yuchen
    Cai, Wenlong
    Wu, Hao
    JOURNAL OF ENERGY CHEMISTRY, 2025, 103 : 79 - 89
  • [9] Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries
    Shehab, Mohammad K.
    Weeraratne, K. Shamara
    Huang, Tony
    Lao, Ka Un
    El-Kaderi, Hani M.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15083 - 15091
  • [10] Cobalt-Mediated Defect Engineering Endows High Reversible Amorphous VS4 Anode for Advanced Sodium-Ion Storage
    Zhang, Di
    Shao, Yachuan
    Wang, Jian
    Li, Zhaojin
    Wang, Qiujun
    Sun, Huilan
    Sun, Qujiang
    Wang, Bo
    SMALL, 2024, 20 (27)