MCLL-Diff: Multiconditional Low-Light Image Enhancement Based on Diffusion Probabilistic Models

被引:0
作者
Chen, Fengxin [1 ,2 ]
Yu, Ye [1 ,2 ]
Yi, Jun [3 ]
Zhang, Ting [1 ,2 ]
Zhao, Ji [4 ]
Jia, Wei [1 ,2 ]
Yu, Jun [5 ]
机构
[1] Hefei Univ Technol, Intelligent Interconnected Syst Lab Anhui Prov, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
[3] Huanggang Normal Univ, Sch Comp, Huanggang 438000, Hubei, Peoples R China
[4] Univ Sci & Technol China, Inst Adv Technol, Hefei 230093, Peoples R China
[5] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Automat, Hefei 230093, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise; Lighting; Training; Learning systems; Visualization; Image enhancement; Gray-scale; Electronic mail; Diffusion models; Predictive models; Diffusion probabilistic model (DPM); generative model; low-light image enhancement (LLIE); nighttime vehicle recognition;
D O I
10.1109/JSEN.2025.3534566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the inherent limitations of camera sensors in capturing adequate light under low-light conditions, images often suffer from various degradation issues, such as illumination imbalances, artifacts, and noise. While generative model-based methods have made remarkable progress in low-light image enhancement (LLIE), they still face challenges such as unstable training and inconsistent generation quality. To address these challenges, we introduce MCLL-Diff, a novel multiconditional LLIE method based on diffusion probabilistic model (DPM). MCLL-Diff retains the forward process of DPM but introduces a unique multiconditional noise predictor (MCNP) in the reverse process. We first propose a learnable operator module (LOM) to enrich the prior knowledge incorporated in the reverse process. Then, we use MCNP to effectively integrate prior knowledge, low-light images, intermediate variables, and time steps to accurately predict noise. To validate the effectiveness of MCLL-Diff in high-level computer vision tasks, we construct a large-scale nighttime vehicle model (NVM) dataset from real-world nighttime street scenarios. Extensive experiments on benchmark datasets demonstrate MCLL-Diff's superiority in both generalization performance and visual quality. Specifically, we achieved a significant improvement of 0.1 dB in peak signal-to-noise ratio (PSNR) metric on the VE-LOL dataset, and a notable increase of 0.76% in Top-1 accuracy when applied to object recognition on the NVM dataset.
引用
收藏
页码:9912 / 9924
页数:13
相关论文
共 50 条
  • [21] PSC diffusion: patch-based simplified conditional diffusion model for low-light image enhancement
    Wan, Fei
    Xu, Bingxin
    Pan, Weiguo
    Liu, Hongzhe
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [22] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [23] Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement
    Guo, Lanqing
    Lin, Yuxin
    Li, Jian
    Wen, Bihan
    IEEE MULTIMEDIA, 2024, 31 (01) : 33 - 41
  • [24] Low-Light Image Enhancement: A Comparative Review and Prospects
    Kim, Wonjun
    IEEE ACCESS, 2022, 10 (84535-84557): : 84535 - 84557
  • [25] DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement
    Lim, Seokjae
    Kim, Wonjun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4272 - 4284
  • [26] HFMNet: Hierarchical Feature Mining Network for Low-Light Image Enhancement
    Xu, Kai
    Chen, Huaian
    Tan, Xiao
    Chen, Yuxuan
    Jin, Yi
    Kan, Yan
    Zhu, Changan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] Structure-Texture Aware Network for Low-Light Image Enhancement
    Xu, Kai
    Chen, Huaian
    Xu, Chunmei
    Jin, Yi
    Zhu, Changan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 4983 - 4996
  • [28] Unsupervised Boosted Fusion Network for Single Low-Light Image Enhancement
    Zhang, Jianfeng
    Li, Hengxuan
    Huo, Zhanqiang
    IEEE ACCESS, 2024, 12 : 179252 - 179264
  • [29] Cross-Image Disentanglement for Low-Light Enhancement in Real World
    Guo, Lanqing
    Wan, Renjie
    Yang, Wenhan
    Kot, Alex C.
    Wen, Bihan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2550 - 2563
  • [30] Low-Light Image Enhancement via Progressive-Recursive Network
    Li, Jinjiang
    Feng, Xiaomei
    Hua, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4227 - 4240