MCLL-Diff: Multiconditional Low-Light Image Enhancement Based on Diffusion Probabilistic Models

被引:0
作者
Chen, Fengxin [1 ,2 ]
Yu, Ye [1 ,2 ]
Yi, Jun [3 ]
Zhang, Ting [1 ,2 ]
Zhao, Ji [4 ]
Jia, Wei [1 ,2 ]
Yu, Jun [5 ]
机构
[1] Hefei Univ Technol, Intelligent Interconnected Syst Lab Anhui Prov, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
[3] Huanggang Normal Univ, Sch Comp, Huanggang 438000, Hubei, Peoples R China
[4] Univ Sci & Technol China, Inst Adv Technol, Hefei 230093, Peoples R China
[5] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Automat, Hefei 230093, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise; Lighting; Training; Learning systems; Visualization; Image enhancement; Gray-scale; Electronic mail; Diffusion models; Predictive models; Diffusion probabilistic model (DPM); generative model; low-light image enhancement (LLIE); nighttime vehicle recognition;
D O I
10.1109/JSEN.2025.3534566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the inherent limitations of camera sensors in capturing adequate light under low-light conditions, images often suffer from various degradation issues, such as illumination imbalances, artifacts, and noise. While generative model-based methods have made remarkable progress in low-light image enhancement (LLIE), they still face challenges such as unstable training and inconsistent generation quality. To address these challenges, we introduce MCLL-Diff, a novel multiconditional LLIE method based on diffusion probabilistic model (DPM). MCLL-Diff retains the forward process of DPM but introduces a unique multiconditional noise predictor (MCNP) in the reverse process. We first propose a learnable operator module (LOM) to enrich the prior knowledge incorporated in the reverse process. Then, we use MCNP to effectively integrate prior knowledge, low-light images, intermediate variables, and time steps to accurately predict noise. To validate the effectiveness of MCLL-Diff in high-level computer vision tasks, we construct a large-scale nighttime vehicle model (NVM) dataset from real-world nighttime street scenarios. Extensive experiments on benchmark datasets demonstrate MCLL-Diff's superiority in both generalization performance and visual quality. Specifically, we achieved a significant improvement of 0.1 dB in peak signal-to-noise ratio (PSNR) metric on the VE-LOL dataset, and a notable increase of 0.76% in Top-1 accuracy when applied to object recognition on the NVM dataset.
引用
收藏
页码:9912 / 9924
页数:13
相关论文
共 50 条
  • [1] AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement
    Chan, Cheuk-Yiu
    Siu, Wan-Chi
    Chan, Yuk-Hee
    Chan, H. Anthony
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6324 - 6339
  • [2] Low-Light Image Enhancement with Wavelet-based Diffusion Models
    Jiang, Hai
    Luo, Ao
    Fan, Haoqiang
    Han, Songchen
    Liu, Shuaicheng
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [3] DLDiff: Image Detail-Guided Latent Diffusion Model for Low-Light Image Enhancement
    Xue, Minglong
    He, Yanyi
    He, Jinhong
    Zhong, Senming
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2255 - 2259
  • [4] An Improved CycleGAN-Based Model for Low-Light Image Enhancement
    Tang, Guangyi
    Ni, Jianjun
    Chen, Yan
    Cao, Weidong
    Yang, Simon X.
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 21879 - 21892
  • [5] Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement
    Kang, Sicong
    Gao, Shuaibo
    Wu, Wenhui
    Wang, Xu
    Wang, Shuoyao
    Qiu, Guoping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13244 - 13256
  • [6] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588
  • [7] LiCENt: Low-Light Image Enhancement Using the Light Channel of HSL
    Garg, Atik
    Pan, Xin-Wen
    Dung, Lan-Rong
    IEEE ACCESS, 2022, 10 : 33547 - 33560
  • [8] LLDiffusion: Learning degradation representations in diffusion models for low-light image enhancement
    Wang, Tao
    Zhang, Kaihao
    Zhang, Yong
    Luo, Wenhan
    Stenger, Bjorn
    Lu, Tong
    Kim, Tae-Kyun
    Liu, Wei
    PATTERN RECOGNITION, 2025, 166
  • [9] Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement
    Jiang, Qiuping
    Mao, Yudong
    Cong, Runmin
    Ren, Wenqi
    Huang, Chao
    Shao, Feng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19440 - 19455
  • [10] LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models
    Jiang, Hai
    Luo, Ao
    Liu, Xiaohong
    Han, Songchen
    Liu, Shuaicheng
    COMPUTER VISION - ECCV 2024, PT XLVIII, 2025, 15106 : 161 - 179