Universal Phase Identification of Block Copolymers From Physics-Informed Machine Learning

被引:4
作者
Fang, Xinyi [1 ,2 ]
Murphy, Elizabeth A. [2 ,3 ,4 ]
Kohl, Phillip A. [2 ,4 ]
Li, Youli [2 ,4 ]
Hawker, Craig J. [2 ,3 ,4 ,5 ]
Bates, Christopher M. [2 ,3 ,4 ,5 ,6 ]
Gu, Mengyang [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, BioPACIFIC Mat Innovat Platform, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
block copolymers; feature selection; machine learning; physics-informed; self-assembly; MORPHOLOGY; POLYMERS;
D O I
10.1002/pol.20241063
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Block copolymers play a vital role in materials science due to their diverse self-assembly behavior. Traditionally, exploring the block copolymer self-assembly and associated structure-property relationships involve iterative synthesis, characterization, and theory, which is labor-intensive both experimentally and computationally. Here, we introduce a versatile, high-throughput workflow toward materials discovery that integrates controlled polymerization and automated chromatographic separation with a novel physics-informed machine-learning algorithm for the rapid analysis of small-angle X-ray scattering data. Leveraging the expansive and high-quality experimental data sets generated by fractionating polymers using automated chromatography, this machine-learning method effectively reduces data dimensionality by extracting chemical-independent features from SAXS data. This new approach allows for the rapid and accurate prediction of morphologies without repetitive and time-consuming manual analysis, achieving out-of-sample predictive accuracy of around 95% for both novel and existing materials in the training data set. By focusing on a subset of samples with large predictive uncertainty, only a small fraction of the samples needs to be inspected to further improve accuracy. Collectively, the synergistic combination of controlled synthesis, automated chromatography, and data-driven analysis creates a powerful workflow that markedly expedites the discovery of structure-property relationships in advanced soft materials.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 44 条
[21]   Thermodynamically stable plumber's nightmare structures in block copolymers [J].
Lee, Hojun ;
Kwon, Sangwoo ;
Min, Jaemin ;
Jin, Seon-Mi ;
Hwang, Jun Ho ;
Lee, Eunji ;
Lee, Won Bo ;
Park, Moon Jeong .
SCIENCE, 2024, 383 (6678) :70-76
[22]  
Lee JW, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-13749-3
[23]   Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts [J].
Lee, Sangwoo ;
Bluemle, Michael J. ;
Bates, Frank S. .
SCIENCE, 2010, 330 (6002) :349-353
[24]   THEORY OF MICROPHASE SEPARATION IN BLOCK CO-POLYMERS [J].
LEIBLER, L .
MACROMOLECULES, 1980, 13 (06) :1602-1617
[25]   Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations [J].
Liggins, RT ;
Burt, HM .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (02) :191-202
[26]   STABLE AND UNSTABLE PHASES OF A DIBLOCK COPOLYMER MELT [J].
MATSEN, MW ;
SCHICK, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (16) :2660-2663
[27]   Chromatographic Separation: A Versatile Strategy to Prepare Discrete and Well-Defined Polymer Libraries [J].
Murphy, Elizabeth A. ;
Zhang, Cheng ;
Bates, Christopher M. ;
Hawker, Craig J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2024, :1202-1213
[28]   Accelerated discovery and mapping of block copolymer phase diagrams [J].
Murphy, Elizabeth A. ;
Skala, Stephen J. ;
Kottage, Dimagi ;
Kohl, Phillip A. ;
Li, Youli ;
Zhang, Cheng ;
Hawker, Craig J. ;
Bates, Christopher M. .
PHYSICAL REVIEW MATERIALS, 2024, 8 (01)
[29]   Efficient Creation and Morphological Analysis of ABC Triblock Terpolymer Libraries [J].
Murphy, Elizabeth A. ;
Chen, Yan-Qiao ;
Albanese, Kaitlin ;
Blankenship, Jacob R. ;
Abdilla, Allison ;
Bates, Morgan W. ;
Zhang, Cheng ;
Bates, Christopher M. ;
Hawker, Craig J. .
MACROMOLECULES, 2022, 55 (19) :8875-8882
[30]   Machine Learning Models and Dimensionality Reduction for Prediction of Polymer Properties [J].
Mysona, Joshua A. ;
Nealey, Paul F. ;
de Pablo, Juan J. .
MACROMOLECULES, 2024, 57 (05) :1988-1997