Universal Phase Identification of Block Copolymers From Physics-Informed Machine Learning

被引:0
作者
Fang, Xinyi [1 ,2 ]
Murphy, Elizabeth A. [2 ,3 ,4 ]
Kohl, Phillip A. [2 ,4 ]
Li, Youli [2 ,4 ]
Hawker, Craig J. [2 ,3 ,4 ,5 ]
Bates, Christopher M. [2 ,3 ,4 ,5 ,6 ]
Gu, Mengyang [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, BioPACIFIC Mat Innovat Platform, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
block copolymers; feature selection; machine learning; physics-informed; self-assembly; MORPHOLOGY; POLYMERS;
D O I
10.1002/pol.20241063
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Block copolymers play a vital role in materials science due to their diverse self-assembly behavior. Traditionally, exploring the block copolymer self-assembly and associated structure-property relationships involve iterative synthesis, characterization, and theory, which is labor-intensive both experimentally and computationally. Here, we introduce a versatile, high-throughput workflow toward materials discovery that integrates controlled polymerization and automated chromatographic separation with a novel physics-informed machine-learning algorithm for the rapid analysis of small-angle X-ray scattering data. Leveraging the expansive and high-quality experimental data sets generated by fractionating polymers using automated chromatography, this machine-learning method effectively reduces data dimensionality by extracting chemical-independent features from SAXS data. This new approach allows for the rapid and accurate prediction of morphologies without repetitive and time-consuming manual analysis, achieving out-of-sample predictive accuracy of around 95% for both novel and existing materials in the training data set. By focusing on a subset of samples with large predictive uncertainty, only a small fraction of the samples needs to be inspected to further improve accuracy. Collectively, the synergistic combination of controlled synthesis, automated chromatography, and data-driven analysis creates a powerful workflow that markedly expedites the discovery of structure-property relationships in advanced soft materials.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 45 条
  • [11] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [12] Tailoring Writability and Performance of Star Block Copolypeptides Hydrogels through Side-Chain Design
    Garcia, Ronnie V.
    Murphy, Elizabeth A.
    Sinha, Nairiti J.
    Okayama, Yoichi
    Uruena, Juan Manuel
    Helgeson, Matthew E.
    Bates, Christopher M.
    Hawker, Craig J.
    Murphy, Robert D.
    de Alaniz, Javier Read
    [J]. SMALL, 2023, 19 (50)
  • [13] Gu M., 2023, The New England Journal of Statistics in Data Science, V1, P172
  • [14] RobustGaSP: Robust Gaussian Stochastic Process Emulation in R
    Gu, Mengyang
    Palomo, Jesus
    Berger, James O.
    [J]. R JOURNAL, 2019, 11 (01): : 112 - 136
  • [15] ROBUST GAUSSIAN STOCHASTIC PROCESS EMULATION
    Gu, Mengyang
    Wang, Xiaojing
    Berger, James O.
    [J]. ANNALS OF STATISTICS, 2018, 46 (06) : 3069 - 3097
  • [16] Topological Frustration as a New Parameter to Tune Morphology Revealed through Exploring the Continuum between A-B-C 3-Arm Star and Linear Triblock Polymers
    Gupta, Rohit
    Misra, Mayank
    Zhang, Wenxu
    Mukhtyar, Ankita
    Gido, Samuel P.
    Ribbe, Alexander
    Escobedo, Fernando A.
    Coughlin, E. Bryan
    [J]. MACROMOLECULES, 2021, 54 (09) : 4401 - 4411
  • [17] Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination (?P(q) and S(q) CREASE?)
    Heil, Christian M.
    Ma, Yingzhen
    Bharti, Bhuvnesh
    Jayaraman, Arthi
    [J]. JACS AU, 2023, 3 (03): : 889 - 904
  • [18] Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) with Machine Learning Enhancement to Determine Structure of Nanoparticle Mixtures and Solutions
    Heil, Christian M.
    Patil, Anvay
    Dhinojwala, Ali
    Jayaraman, Arthi
    [J]. ACS CENTRAL SCIENCE, 2022, 8 (07) : 996 - 1007
  • [19] BLOCK COPOLYMER THEORY .3. STATISTICAL-MECHANICS OF MICRODOMAIN STRUCTURE
    HELFAND, E
    [J]. MACROMOLECULES, 1975, 8 (04) : 552 - 556
  • [20] Violin plots: A box plot-density trace synergism
    Hintze, JL
    Nelson, RD
    [J]. AMERICAN STATISTICIAN, 1998, 52 (02) : 181 - 184