Universal Phase Identification of Block Copolymers From Physics-Informed Machine Learning

被引:0
作者
Fang, Xinyi [1 ,2 ]
Murphy, Elizabeth A. [2 ,3 ,4 ]
Kohl, Phillip A. [2 ,4 ]
Li, Youli [2 ,4 ]
Hawker, Craig J. [2 ,3 ,4 ,5 ]
Bates, Christopher M. [2 ,3 ,4 ,5 ,6 ]
Gu, Mengyang [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, BioPACIFIC Mat Innovat Platform, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
block copolymers; feature selection; machine learning; physics-informed; self-assembly; MORPHOLOGY; POLYMERS;
D O I
10.1002/pol.20241063
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Block copolymers play a vital role in materials science due to their diverse self-assembly behavior. Traditionally, exploring the block copolymer self-assembly and associated structure-property relationships involve iterative synthesis, characterization, and theory, which is labor-intensive both experimentally and computationally. Here, we introduce a versatile, high-throughput workflow toward materials discovery that integrates controlled polymerization and automated chromatographic separation with a novel physics-informed machine-learning algorithm for the rapid analysis of small-angle X-ray scattering data. Leveraging the expansive and high-quality experimental data sets generated by fractionating polymers using automated chromatography, this machine-learning method effectively reduces data dimensionality by extracting chemical-independent features from SAXS data. This new approach allows for the rapid and accurate prediction of morphologies without repetitive and time-consuming manual analysis, achieving out-of-sample predictive accuracy of around 95% for both novel and existing materials in the training data set. By focusing on a subset of samples with large predictive uncertainty, only a small fraction of the samples needs to be inspected to further improve accuracy. Collectively, the synergistic combination of controlled synthesis, automated chromatography, and data-driven analysis creates a powerful workflow that markedly expedites the discovery of structure-property relationships in advanced soft materials.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 45 条
  • [1] Deep learning model for predicting phase diagrams of block copolymers
    Aoyagi, Takeshi
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [2] Random Forest Predictor for Diblock Copolymer Phase Behavior
    Arora, Akash
    Lin, Tzyy-Shyang
    Rebello, Nathan J.
    Av-Ron, Sarah H. M.
    Mochigase, Hidenobu
    Olsen, Bradley D.
    [J]. ACS MACRO LETTERS, 2021, 10 (11) : 1339 - 1345
  • [3] Chain Redistribution Stabilizes Coexistence Phases in Block Copolymer Blends
    Bae, Suwon
    Yager, Kevin G.
    [J]. ACS NANO, 2022, 16 (10) : 17107 - 17115
  • [4] 50th Anniversary Perspective: Block Polymers-Pure Potential
    Bates, Christopher M.
    Bates, Frank S.
    [J]. MACROMOLECULES, 2017, 50 (01) : 3 - 22
  • [5] Stability of the A15 phase in diblock copolymer melts
    Bates, Morgan W.
    Lequieu, Joshua
    Barbon, Stephanie M.
    Lewis, Ronald M., III
    Delaney, Kris T.
    Anastasaki, Athina
    Hawker, Craig J.
    Fredrickson, Glenn H.
    Bates, Christopher M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (27) : 13194 - 13199
  • [6] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [7] Breiman Leo, 2001, Machine Learning, V45, P5
  • [8] Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers
    Cui, Shuquan
    Murphy, Elizabeth A.
    Zhang, Wei
    Zografos, Aristotelis
    Shen, Liyang
    Bates, Frank S.
    Lodge, Timothy P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (10) : 6796 - 6805
  • [9] Machine Translation between BigSMILES Line Notation and Chemical Structure Diagrams
    Deagen, Michael E.
    Dalle-Cort, Berenger
    Rebello, Nathan J.
    Lin, Tzyy-Shyang
    Walsh, Dylan J.
    Olsen, Bradley D.
    [J]. MACROMOLECULES, 2023, 57 (01) : 42 - 53
  • [10] Reliable emulation of complex functionals by active learning with error control
    Fang, Xinyi
    Gu, Mengyang
    Wu, Jianzhong
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (21)