Universal Phase Identification of Block Copolymers From Physics-Informed Machine Learning

被引:4
作者
Fang, Xinyi [1 ,2 ]
Murphy, Elizabeth A. [2 ,3 ,4 ]
Kohl, Phillip A. [2 ,4 ]
Li, Youli [2 ,4 ]
Hawker, Craig J. [2 ,3 ,4 ,5 ]
Bates, Christopher M. [2 ,3 ,4 ,5 ,6 ]
Gu, Mengyang [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, BioPACIFIC Mat Innovat Platform, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
block copolymers; feature selection; machine learning; physics-informed; self-assembly; MORPHOLOGY; POLYMERS;
D O I
10.1002/pol.20241063
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Block copolymers play a vital role in materials science due to their diverse self-assembly behavior. Traditionally, exploring the block copolymer self-assembly and associated structure-property relationships involve iterative synthesis, characterization, and theory, which is labor-intensive both experimentally and computationally. Here, we introduce a versatile, high-throughput workflow toward materials discovery that integrates controlled polymerization and automated chromatographic separation with a novel physics-informed machine-learning algorithm for the rapid analysis of small-angle X-ray scattering data. Leveraging the expansive and high-quality experimental data sets generated by fractionating polymers using automated chromatography, this machine-learning method effectively reduces data dimensionality by extracting chemical-independent features from SAXS data. This new approach allows for the rapid and accurate prediction of morphologies without repetitive and time-consuming manual analysis, achieving out-of-sample predictive accuracy of around 95% for both novel and existing materials in the training data set. By focusing on a subset of samples with large predictive uncertainty, only a small fraction of the samples needs to be inspected to further improve accuracy. Collectively, the synergistic combination of controlled synthesis, automated chromatography, and data-driven analysis creates a powerful workflow that markedly expedites the discovery of structure-property relationships in advanced soft materials.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 44 条
[1]   Deep learning model for predicting phase diagrams of block copolymers [J].
Aoyagi, Takeshi .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
[2]   Random Forest Predictor for Diblock Copolymer Phase Behavior [J].
Arora, Akash ;
Lin, Tzyy-Shyang ;
Rebello, Nathan J. ;
Av-Ron, Sarah H. M. ;
Mochigase, Hidenobu ;
Olsen, Bradley D. .
ACS MACRO LETTERS, 2021, 10 (11) :1339-1345
[3]   Chain Redistribution Stabilizes Coexistence Phases in Block Copolymer Blends [J].
Bae, Suwon ;
Yager, Kevin G. .
ACS NANO, 2022, 16 (10) :17107-17115
[4]   50th Anniversary Perspective: Block Polymers-Pure Potential [J].
Bates, Christopher M. ;
Bates, Frank S. .
MACROMOLECULES, 2017, 50 (01) :3-22
[5]   Stability of the A15 phase in diblock copolymer melts [J].
Bates, Morgan W. ;
Lequieu, Joshua ;
Barbon, Stephanie M. ;
Lewis, Ronald M., III ;
Delaney, Kris T. ;
Anastasaki, Athina ;
Hawker, Craig J. ;
Fredrickson, Glenn H. ;
Bates, Christopher M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (27) :13194-13199
[6]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers [J].
Cui, Shuquan ;
Murphy, Elizabeth A. ;
Zhang, Wei ;
Zografos, Aristotelis ;
Shen, Liyang ;
Bates, Frank S. ;
Lodge, Timothy P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (10) :6796-6805
[9]   Machine Translation between BigSMILES Line Notation and Chemical Structure Diagrams [J].
Deagen, Michael E. ;
Dalle-Cort, Berenger ;
Rebello, Nathan J. ;
Lin, Tzyy-Shyang ;
Walsh, Dylan J. ;
Olsen, Bradley D. .
MACROMOLECULES, 2023, 57 (01) :42-53
[10]   Reliable emulation of complex functionals by active learning with error control [J].
Fang, Xinyi ;
Gu, Mengyang ;
Wu, Jianzhong .
JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (21)