A parametrization algorithm to compute lower dimensional elliptic tori in Hamiltonian systems

被引:0
作者
Caracciolo, Chiara [1 ,2 ]
Figueras, Jordi-Lluis [1 ]
Haro, Alex [3 ]
机构
[1] Uppsala Univ, Dept Math, Uppsala, Sweden
[2] Univ Padua, Dept Math, Padua, Italy
[3] Univ Barcelona & Centrede Recerca Matemat, Dept Matemat & Informat, Barcelona, Spain
基金
瑞典研究理事会;
关键词
lower dimensional invariant tori; KAM theory; parametrization method; QUASI-PERIODIC MAPS; INVARIANT TORI; PARAMETERIZATION METHOD; NORMAL-FORM; KAM THEORY; WHISKERS; THEOREM;
D O I
10.1088/1361-6544/ada47b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for the construction of lower dimensional elliptic tori in parametric Hamiltonian systems by means of the parametrization method with the tangent and normal frequencies being prescribed. This requires that the Hamiltonian system has as many parameters as the dimension of the normal dynamics, and the algorithm must adjust these parameters. We illustrate the methodology with an implementation of the algorithm computing 2-dimensional elliptic tori in a system of 4 coupled anharmonic oscillators (4 degrees of freedom).
引用
收藏
页数:25
相关论文
共 42 条
[1]  
[Anonymous], 1996, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[2]  
Arnold V I, 1963, RUSS MATH SURV, V18, P85, DOI [10.1070/RM1963v018n06ABEH001143, DOI 10.1070/RM1963V018N06ABEH001143]
[3]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[4]   N-dimensional elliptic invariant tori for the planar (N+1)-body problem [J].
Biasco, L ;
Chierchia, L ;
Valdinoci, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1560-1588
[5]  
Bourgain J, 1997, MATH RES LETT, V4, P445
[6]  
Calleja R., 2022, New Frontiers of Celestial MechanicsTheory and Applications, V399, P81
[7]   KAM quasi-periodic tori for the dissipative spin-orbit problem [J].
Calleja, Renato ;
Celletti, Alessandra ;
Gimeno, Joan ;
de la Llave, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 106
[8]  
Caracciolo C., 2022, Math. Eng, V4, P1, DOI DOI 10.3934/MINE.2022051
[9]  
Caracciolo C., Rigorous results on the parametrization method of low dimensional elliptic tori in Hamiltonian systems
[10]   Librational KAM tori in the secular dynamics of the ν Andromedae planetary system [J].
Caracciolo, Chiara ;
Locatelli, Ugo ;
Sansottera, Marco ;
Volpi, Mara .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (02) :2147-2166