A novel numerical method for stochastic conformable fractional differential systems

被引:0
作者
Fareed, Aisha F. [1 ]
Mohamed, Emad A. [1 ]
Aly, Mokhtar [2 ]
Semary, Mourad S. [3 ,4 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Engn, Dept Elect Engn, Al Kharj 11942, Saudi Arabia
[2] Univ San Sebastian, Fac Ingn Arquitectura & Diseno, Bellavista 7, Santiago 8420524, Chile
[3] Badr Univ Cairo, Fac Engn, Basic Sci Dept, Cairo 11829, Egypt
[4] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha 13512, Egypt
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
关键词
stochastic differential equations; white noise; fractional-order systems; population model; conformable derivative; EQUATIONS;
D O I
10.3934/math.2025345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduced the conformable fractional discrete Temimi-Ansari method (CFDTAM), a novel numerical framework designed to solve fractional stochastic nonlinear differential equations with enhanced efficiency and accuracy. By leveraging the conformable fractional derivative (CFD), the CFDTAM unifies classical and fractional-order systems while maintaining computational simplicity. The method's efficacy was demonstrated through applications to a stochastic population model and the Brusselator system, showcasing its ability to handle nonlinear dynamics with high precision. A comprehensive convergence analysis was also conducted to validate the reliability and stability of the proposed method. All computations were performed using Mathematica 12 software, ensuring accuracy and consistency in numerical simulations. CFDTAM sets a new benchmark in fractional stochastic modeling, paving the way for advancements in partial differential equations, delay systems, and hybrid models.
引用
收藏
页码:7509 / 7525
页数:17
相关论文
共 38 条
  • [1] Abdelaty A. M., 2018, Mathematical Techniques of Fractional Order Systems, P409, DOI [10.1016/B978-0-12-813592-1.00014-3, DOI 10.1016/B978-0-12-813592-1.00014-3]
  • [2] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [3] Cole Bio-Impedance Model Variations in Daucus Carota Sativus Under Heating and Freezing Conditions
    AboAlNaga, BahaaAlDeen M.
    Said, Lobna A.
    Madian, Ahmed H.
    Elwakil, Ahmed S.
    Radwan, Ahmed G.
    [J]. IEEE ACCESS, 2019, 7 : 113254 - 113263
  • [4] Nonlocal Controllability of Sobolev-Type Conformable Fractional Stochastic Evolution Inclusions with Clarke Subdifferential
    Ahmed, Hamdy M.
    Ragusa, Maria Alessandra
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3239 - 3253
  • [5] A semi-analytical iterative method for solving differential algebraic equations
    Al-Jawary, Majeed
    Hatif, Sinan
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 2581 - 2586
  • [6] Review of fractional-order electrical characterization of supercapacitors
    Allagui, Anis
    Freeborn, Todd J.
    Elwakil, Ahmed S.
    Fouda, Mohammed E.
    Maundy, Brent J.
    Radwan, Ahmad G.
    Said, Zafar
    Abdelkareem, Mohammad Ali
    [J]. JOURNAL OF POWER SOURCES, 2018, 400 : 457 - 467
  • [7] A fractional Temimi-Ansari method (FTAM) with convergence analysis for solving physical equations
    Arafa, Anas A. M.
    El-Sayed, Ahmed M. A.
    SH. Hagag, Ahmed M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6612 - 6629
  • [8] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769
  • [9] Adaptive neural-fuzzy and backstepping controller for port-Hamiltonian systems
    Azar, Ahmad Taher
    Serrano, Fernando E.
    Flores, Marco A.
    Vaidyanathan, Sundarapandian
    Zhu, Quanmin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2020, 62 (01) : 1 - 12
  • [10] Caputo A., 2015, PROGR FRACT DIFFER A, V1, P73, DOI [DOI 10.12785/PFDA/010201, 10.12785pfda010201ff/////]