Naturally Occurring Plant-Based Anticancerous Candidates as Potential ERK2 Inhibitors: In-Silico Database Mining and Molecular Dynamics Simulations

被引:0
作者
Ibrahim, Mahmoud A. A. [1 ,2 ]
Ali, Sara S. M. [1 ]
Abdelrahman, Alaa H. M. [1 ]
Abdeljawaad, Khlood A. A. [1 ]
Sidhom, Peter A. [3 ]
Sayed, Shaban R. M. [4 ]
El-Tayeb, Mohamed A. [4 ]
Pare, Paul W. [5 ]
Hegazy, Mohamed-Elamir F. [6 ]
机构
[1] Minia Univ, Fac Sci, Chem Dept, Computat Chem Lab, Al Minya 61519, Egypt
[2] Univ KwaZulu Natal, Sch Hlth Sci, Westville Campus, ZA-4000 Durban, South Africa
[3] Tanta Univ, Fac Pharm, Dept Pharmaceut Chem, Tanta 31527, Egypt
[4] King Saud Univ, Coll Sci, Dept Bot & Microbiol, PO Box 2455, Riyadh 11451, Saudi Arabia
[5] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA
[6] Johannes Gutenberg Univ Mainz, Inst Pharmaceut & Biomed Sci, Dept Pharmaceut Biol, Staudinger Weg 5, D-55128 Mainz, Germany
关键词
Extracellular signal-regulated kinase 2 (ERK2); anticancer drug; NPACT database; database mining; molecular dynamics simulation; DRUG DISCOVERY; SIGNALING PATHWAY; KINASES; CANCER; IDENTIFICATION; PERFORMANCE; FLAVONOIDS; ACCURACY; PRODUCTS; MAPK;
D O I
10.1002/cbdv.202401238
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The evolutionarily conserved extracellular signal-regulated kinase 2 (ERK2) is involved in regulating cellular signaling in both normal and pathological conditions. ERK2 expression is critical for human development, while hyperactivation is a major factor in tumor progression. Up to now, there have been no approved inhibitors that target ERK2, and as such, here we report on screening of a naturally occurring plant-based anticancerous compound-activity-target (NPACT) database for prospective ERK2 inhibitors. More than 1,500 phytochemicals were screened using in-silico molecular docking and molecular dynamics (MD) approaches. NPACT compounds with a docking score lower than a co-crystallized LHZ inhibitor (calc. -10.5 kcal/mol) were subjected to MD simulations. Binding energies (Delta Gbinding) of inhibitor-ERK2 complexes over the MD course were estimated using an MM-GBSA approach. Based on MM-GBSA//100 ns MD simulations, the steroid zhankuic acid C (NPACT01034) demonstrated greater binding affinity against ERK2 protein than LHZ, with Delta Gbinding values of -50.0 and -47.7 kcal/mol, respectively. Structural and energetical analyses throughout the MD course demonstrated stabilization of zhankuic acid C complexed with ERK2 protein. The anticipated ADMET properties of zhankuic acid C indicated minimal toxicity. Moreover, in-silico evaluation of fourteen ERK2 inhibitors in clinical trials demonstrated the higher binding affinity of zhankuic acid C towards ERK2 protein.
引用
收藏
页数:15
相关论文
共 31 条