Algebraic theory of formal regular-singular connections with parameters

被引:2
作者
Hai, Phung Ho [1 ]
dos Santos, Joao Pedro [2 ]
Tam, Pham Thanh [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Mat, Hanoi, Vietnam
[2] Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu,Case 247, F-75252 Paris 5, France
[3] Hanoi Pedag Univ 2, Dept Math, Vinh Phuc, Vietnam
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2024年 / 152卷
关键词
Regular-singular connections; Tannakian categories; group schemes;
D O I
10.4171/RSMUP/134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is divided into two parts. The first is a review, through categorical lenses, of the classical theory of regular-singular differential systems over C((x)) and PC1 \ {0, oo}, where C is algebraically closed and of characteristic zero. It aims to read the existing classification results as an equivalence between regular-singular systems and representations of the group Z. In the second part, we deal with regular-singular connections over R((x)) and PR1 \ {0, oo}, where R = C OE OE t1, ... , tr center dot center dot=I. The picture we offer shows that regular-singular connections are equivalent to representations of Z, now over R.
引用
收藏
页码:171 / 228
页数:58
相关论文
共 44 条
[1]  
Abe E., 1980, HOPF ALGEBRAS, V74
[2]  
ANDR Y., 2020, Progr. Math., V189
[3]   Non-commutative differentials and differential or difference Galois theory [J].
André, Y .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05) :685-739
[4]  
[Anonymous], 1993, J. Amer. Math. Soc, V6, P597, DOI [DOI 10.2307/2152778, DOI 10.1090/S0894-0347-1993-1182671-2]
[5]  
Arthur Ogus PierreBerthelot., 1978, Notes on crystalline cohomology
[6]   The proalgebraic completion of rigid groups [J].
Bass, H ;
Lubotzky, AN ;
Magid, AR ;
Mozes, S .
GEOMETRIAE DEDICATA, 2002, 95 (01) :19-58
[7]  
Bourbaki N., 2012, Elements de mathematique. Algebre. Chapitre 8: Modules et anneaux semi-simples
[8]  
BOURBAKI N., 1972, Actualites Sci. Indust., V1349
[9]  
BoURBAKI N., 2007, Elements de mathematique. Groupes et algebres de Lie, V1
[10]  
Bourbaki N., 2004, Theory of Sets