Semitotal Roman Domination in Graphs

被引:0
|
作者
Bullang, Brayan F. [1 ]
Aniversario, Imelda S. [1 ,2 ]
Aradais, Alkajim A. [2 ,3 ]
Jamil, Ferdinand P. [1 ,2 ]
机构
[1] MSU, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[2] MSU, Premier Res Inst Sci & Math, Iligan Inst Technol, Ctr Math & Theoret Phys Sci, Iligan 9200, Philippines
[3] Mindanao State Univ Tawi, Coll Educ, Tawi Coll Technol & Oceanog, Integrated Lab Sch, Tawi Tawi, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2025年 / 18卷 / 01期
关键词
Semitotal Roman dominating function; semitotal Roman domination number; Roman dominating function; Roman domination number; total Roman dominating function; total Roman domination number;
D O I
10.29020/nybg.ejpam.v18i1.5749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nontrivial graph without isolated vertices. A function f:V(G)->{0,1,2} is a semitotal Roman dominating function of G if for each v is an element of V(G) with f(v)=0, there exists u is an element of V(G) for which f(u)=2 and uv is an element of E(G) and for each v is an element of V(G) with f(v)not equal 0, there exists u is an element of V(G) for which f(u)not equal 0 and d(G)(u,v)<= 2. The minimum weight omega(G)(f) = & sum;(u is an element of V(G))f(u) of a semitotal Roman dominating function f of G is the semitotal Roman domination number} of G, denoted by gamma(t2R)(G). In this paper, we initiate the study of semitotal Roman domination. We characterize graphs G with small values of gamma(t2R)(G) and solve some realization problems with other existing related concepts. We also investigate the semitotal Roman domination in the join, corona, and complimentary prism of graphs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On Semitotal Domination in Graphs
    Aniversario, Imelda S.
    Canoy, Sergio R., Jr.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1410 - 1425
  • [2] Semitotal Domination in Graphs
    Goddard, Wayne
    Henning, Michael A.
    McPillan, Charles A.
    UTILITAS MATHEMATICA, 2014, 94 : 67 - 81
  • [3] On matching and semitotal domination in graphs
    Henning, Michael A.
    Marcon, Alister J.
    DISCRETE MATHEMATICS, 2014, 324 : 13 - 18
  • [4] ISOLATE SEMITOTAL DOMINATION IN GRAPHS
    Aradais, Anuarisa A.
    Laja, Ladznar S.
    Aradais, Alkajim A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 32 : 55 - 62
  • [5] Independent semitotal domination in graphs
    Padmavathi, S. V.
    Manju, J. Sabari
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (01): : 145 - 156
  • [6] Semitotal domination of Harary graphs
    Kartal, Zeliha
    Aytac, Aysun
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 11 - 17
  • [7] On the semitotal domination number of line graphs
    Zhu, Enqiang
    Liu, Chanjuan
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 295 - 298
  • [8] Algorithmic aspects of semitotal domination in graphs
    Henning, Michael A.
    Pandey, Arti
    THEORETICAL COMPUTER SCIENCE, 2019, 766 : 46 - 57
  • [9] INDEPENDENT SEMITOTAL DOMINATION IN THE CORONA OF GRAPHS
    Susada, Bryan L.
    Eballe, Rolito G.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (01): : 89 - 98
  • [10] THE SEMITOTAL DOMINATION PROBLEM IN BLOCK GRAPHS
    Henning, Michael A.
    Pal, Saikat
    Pradhan, D.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 231 - 248