Oxidation-induced nucleophilic substitution at the electron-rich B(12) vertex in [CB11H12]- under catalyst-free conditions

被引:0
作者
Sun, Wanqi [1 ]
Jin, Yujie [1 ,2 ]
Wang, Yongtao [1 ,2 ]
Wen, Zeyu [1 ]
Sun, Jizeng [1 ]
Yao, Jia [1 ,2 ]
Duttwyler, Simon [1 ]
Li, Haoran [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Dept Chem, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ctr Chem Frontier Technol, ZJU NHU United R&D Ctr, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
B-H FUNCTIONALIZATION; DERIVATIVES; CARBORANES; ANIONS;
D O I
10.1039/d5sc00234f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly regioselective B(12) substitutions of the monocarborane anion [CB11H12]- has been a challenge. Here, we synthesized a stable B-O-N zwitterionic compound with an impressive yield (isolated yield up to 98%) and excellent regioselectivity at the B(12) position under catalyst-free conditions. The kinetics, substituent effect, and capture experiments are paired with theoretical calculations, showing that the reaction mechanism is oxidation-induced nucleophilic substitution. The hydride anion at the B(12) position is abstracted by an oxoammonium oxidant with lower cleavage energy of 4.2 kcal mol-1 than B(7-11) positions, thereby changing the electronegativity upon the conversion of [CB11H12]- to neutral [CB11H11], in turn giving very high regioselectivity for nucleophilic substitution. This work presents an effective method for synthesizing B(12) oxygen derivatives of the [CB11H12]- anion.
引用
收藏
页码:5942 / 5947
页数:6
相关论文
共 53 条
  • [1] Baublis a.J., Spokoyny a.M., Chem, 10, pp. 29-32, (2024)
  • [2] Grams R.J., Santos W.L., Scorei I.R., abad-Garcia A., Rosenblum C.a., Bita A., Cerecetto H., Vinas C., Soriano-Ursua M.a., Chem. Rev., 124, pp. 2441-2511, (2024)
  • [3] Ready a.D., Nelson Y.a., Torres Pomares D.F., Spokoyny a.M., acc. Chem. Res., 57, pp. 1310-1324, (2024)
  • [4] Yu W.-B., Cui P.-F., Gao W.-X., Jin G.-X., Coord. Chem. Rev., 350, pp. 300-319, (2017)
  • [5] Qiu Z., Xie Z., Chem. Soc. Rev., 51, pp. 3164-3180, (2022)
  • [6] Mills H.a., Martin J.L., Rheingold a.L., Spokoyny a.M., J. am. Chem. Soc., 142, pp. 4586-4591, (2020)
  • [7] Wang J., Xiang L., Liu X., Matler A., Lin Z., Ye Q., Chem. Sci., 15, pp. 4839-4845, (2024)
  • [8] Chen M., Xu J., Zhao D., Sun F., Tian S., Tu D., Lu C., Yan H., angew. Chem., Int. Ed., 61, (2022)
  • [9] Marfavi A., Kavianpour P., Rendina L.M., Nat. Rev. Chem, 6, pp. 486-504, (2022)
  • [10] Stockmann P., Gozzi M., Kuhnert R., Sarosi M.B., Hey-Hawkins E., Chem. Soc. Rev., 48, pp. 3497-3512, (2019)