Comprehensive assessment and optimization of a hybrid cogeneration system based on compressed air energy storage with high-temperature thermal energy storage

被引:1
作者
Cao, Ruifeng [1 ]
Li, Weiqiang [1 ]
Ni, Hexi [1 ,2 ]
Kuang, Cuixiong [1 ]
Liang, Yutong [1 ]
Fu, Ziheng [1 ]
机构
[1] Northeast Elect Power Univ, Sch Energy & Power Engn, Jilin 132012, Peoples R China
[2] Harbin Boiler Co Ltd, Harbin 150046, Peoples R China
来源
FRONTIERS IN ENERGY | 2024年
关键词
compressed air energy storage (CAES); high-temperature thermal energy storage; supercritical CO2 Brayton cycle; performance assessment; multi-objective optimization; THERMODYNAMIC ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; CAES SYSTEM; CYCLE; WIND;
D O I
10.1007/s11708-024-0972-2
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compressed air energy storage (CAES) is an effective technology for mitigating the fluctuations associated with renewable energy sources. In this work, a hybrid cogeneration energy system that integrates CAES with high-temperature thermal energy storage and a supercritical CO2 Brayton cycle is proposed for enhancing the overall system performance. This proposal emphasizes system cost-effectiveness, eco-friendliness, and adaptability. Comprehensive analyses, including thermodynamic, exergoeconomic, economic, and sensitivity evaluations, are conducted to assess the viability of the system. The findings indicate that, under design conditions, the system achieves an energy storage density, a round-trip efficiency, an exergy efficiency, a unit product cost, and a dynamic payback period of 5.49 kWh/m3, 58.39%, 61.85%, 0.1421 $/kWh, and 4.81 years, respectively. The high-temperature thermal energy storage unit, intercoolers, and aftercooler show potential for optimization due to their suboptimal exergoeconomic performance. Sensitivity evaluation indicates that the operational effectiveness of the system is highly sensitive to the maximum and minimum air storage pressures, the outlet temperature of the high-temperature thermal energy storage unit, and the isentropic efficiencies of both compressors and turbines. Ultimately, the system is optimized for maximum exergy efficiency and minimum dynamic payback period. These findings demonstrate the significant potential of this system and provide valuable insights for its design and optimization.
引用
收藏
页码:175 / 192
页数:18
相关论文
共 53 条
  • [1] Grid-connected renewable energy sources: Review of the recent integration requirements and control methods
    Al-Shetwi, Ali Q.
    Hannan, M. A.
    Jern, Ker Pin
    Mansur, M.
    Mahlia, T. M., I
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 253
  • [2] Exergoeconomic analysis of hybrid sCO2 Brayton power cycle
    Alenezi, A.
    Vesely, L.
    Kapat, J.
    [J]. ENERGY, 2022, 247
  • [3] A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units
    Alirahmi, Seyed Mojtaba
    Mousavi, Shadi Bashiri
    Razmi, Amir Reza
    Ahmadi, Pouria
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2021, 236
  • [4] Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems
    Alirahmi, Seyed Mojtaba
    Razmi, Amir Reza
    Arabkoohsar, Ahmad
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 142 (142)
  • [5] Combination of subcooled compressed air energy storage system with an Organic Rankine Cycle for better electricity efficiency, a thermodynamic analysis
    Alsagri, Ali Sulaiman
    Arabkoohsar, Ahmad
    Alrobaian, Abdulrahman A.
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 239
  • [6] Overview of energy storage in renewable energy systems
    Amrouche, S. Ould
    Rekioua, D.
    Rekioua, T.
    Bacha, S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) : 20914 - 20927
  • [7] Compression ratio energy and exergy analysis of a developed Brayton-based power cycle employing CAES and ORC
    Bagherzadeh, Seyed Amin
    Ruhani, Behrooz
    Namar, Mohammad Mostafa
    Alamian, Rezvan
    Rostami, Sara
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (04) : 2781 - 2790
  • [8] Pumped Thermal Electricity Storage: A technology overview
    Benato, Alberto
    Stoppato, Anna
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 6 : 301 - 315
  • [9] A review on compressed air energy storage: Basic principles, past milestones and recent developments
    Budt, Marcus
    Wolf, Daniel
    Span, Roland
    Yan, Jinyue
    [J]. APPLIED ENERGY, 2016, 170 : 250 - 268
  • [10] Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer
    Cao, Ruifeng
    Li, Weiqiang
    Chen, Ziqi
    Li, Yawei
    [J]. ENERGY, 2024, 294