Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks

被引:0
作者
Koumpanakis, Michail [1 ]
Vilalta, Ricardo [2 ]
机构
[1] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA
[2] Univ Austin, Ctr Sci Technol Engn & Math, Austin, TX USA
来源
DISCOVERY SCIENCE, DS 2024, PT I | 2025年 / 15243卷
关键词
Machine Learning; Physics Informed Neural Networks; Meta-Learning; Generalized Additive Models;
D O I
10.1007/978-3-031-78977-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new way to learn Physics-Informed Neural Network loss functions using Generalized Additive Models. We apply our method by meta-learning parametric partial differential equations, PDEs, on Burger's and 2D Heat Equations. The goal is to learn a new loss function for each parametric PDE using meta-learning. The derived loss function replaces the traditional data loss, allowing us to learn each parametric PDE more efficiently, improving the meta-learner's performance and convergence.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 28 条
[1]   Physics-informed neural networks (PINNs) for fluid mechanics: a review [J].
Cai, Shengze ;
Mao, Zhiping ;
Wang, Zhicheng ;
Yin, Minglang ;
Karniadakis, George Em .
ACTA MECHANICA SINICA, 2021, 37 (12) :1727-1738
[2]   Physics-Informed Neural Networks for Heat Transfer Problems [J].
Cai, Shengze ;
Wang, Zhicheng ;
Wang, Sifan ;
Perdikaris, Paris ;
Karniadakis, George E. M. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06)
[3]   GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs [J].
Chen, Yanlai ;
Koohy, Shawn .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 228
[4]  
Ciampiconi Lorenzo, 2023, arXiv, DOI [DOI 10.48550/ARXIV.2301.05579, 10.48550/arXiv.2301.05579]
[5]  
Finn C, 2017, PR MACH LEARN RES, V70
[6]  
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
[7]  
Gu JT, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3622
[8]  
Hastie T.J., 2017, Generalized Additive Models, P249
[9]   A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials [J].
He, Zhili ;
Ni, Futao ;
Wang, Weiguo ;
Zhang, Jian .
MATERIALS TODAY COMMUNICATIONS, 2021, 28 (28)
[10]  
Janocha K., 2017, Schedae Informaticae, DOI [https://doi.org/10.4467/20838476SI.16.004.6185, DOI 10.4467/20838476SI.16.004.6185, 10.4467/20838476SI.16.004.6185]