Trapped-ion quantum simulation of electron transfer models with tunable dissipation

被引:7
作者
So, Visal [1 ]
Suganthi, Midhuna Duraisamy [1 ,2 ]
Menon, Abhishek [1 ]
Zhu, Mingjian [1 ]
Zhuravel, Roman [1 ]
Pu, Han [1 ]
Wolynes, Peter G. [1 ,3 ,4 ,5 ]
Onuchic, Jose N. [1 ,3 ,4 ,5 ]
Pagano, Guido [1 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] Rice Univ, Dept BioSci, Houston, TX 77005 USA
关键词
DYNAMICS; COHERENCE;
D O I
10.1126/sciadv.ads8011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and light-harvesting systems.
引用
收藏
页数:9
相关论文
共 70 条
[1]   omg blueprint for trapped ion quantum computing with metastable states [J].
Allcock, D. T. C. ;
Campbell, W. C. ;
Chiaverini, J. ;
Chuang, I. L. ;
Hudson, E. R. ;
Moore, I. D. ;
Ransford, A. ;
Roman, C. ;
Sage, J. M. ;
Wineland, D. J. .
APPLIED PHYSICS LETTERS, 2021, 119 (21)
[2]   QUANTUM DECOHERENCE IN MIXED QUANTUM-CLASSICAL SYSTEMS - NONADIABATIC PROCESSES [J].
BITTNER, ER ;
ROSSKY, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (18) :8130-8143
[3]   Sympathetic cooling of trapped Cd+ isotopes -: art. no. 040304 [J].
Blinov, BB ;
Deslauriers, L ;
Lee, P ;
Madsen, MJ ;
Miller, R ;
Monroe, C .
PHYSICAL REVIEW A, 2002, 65 (04) :403041-403044
[4]  
Brandes T., 2004, Lectures on Background to Quantum Information
[5]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[6]  
Carmichael H. J., 2013, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations
[7]   Control of Transverse Motion for Quantum Gates on Individually Addressed Atomic Qubits [J].
Cetina, M. ;
Egan, L. N. ;
Noel, C. ;
Goldman, M. L. ;
Biswas, D. ;
Risinger, A. R. ;
Zhu, D. ;
Monroe, C. .
PRX QUANTUM, 2022, 3 (01)
[8]   Noise-assisted energy transfer in quantum networks and light-harvesting complexes [J].
Chin, A. W. ;
Datta, A. ;
Caruso, F. ;
Huelga, S. F. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Time-Resolved Observation of Thermalization in an Isolated Quantum System [J].
Clos, Govinda ;
Porras, Diego ;
Warring, Ulrich ;
Schaetz, Tobias .
PHYSICAL REVIEW LETTERS, 2016, 117 (17)
[10]   Practical quantum advantage in quantum simulation [J].
Daley, Andrew J. ;
Bloch, Immanuel ;
Kokail, Christian ;
Flannigan, Stuart ;
Pearson, Natalie ;
Troyer, Matthias ;
Zoller, Peter .
NATURE, 2022, 607 (7920) :667-676