IMCMK-CNN: A lightweight convolutional neural network with Multi-scale Kernels for Image-based Malware Classification

被引:0
作者
Zhang, Dandan [1 ]
Song, Yafei [1 ]
Xiang, Qian [1 ]
Wang, Yang [1 ]
机构
[1] Air Force Engn Univ, Inst Air Def & Antimissile, Xian 710051, Shaanxi, Peoples R China
关键词
Lightweight model; Malware detection; Convolutional neural network; Multi-scale Kernels; Malware visualization; Large kernel; VISUALIZATION; INTERNET;
D O I
10.1016/j.aej.2024.10.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rapid and accurate identification of unknown malware and its variants is the premise and basis for the effective prevention of malicious attacks. However, with the explosive growth of malware variants, the efficiency of manual updating of the sample database is getting worse and worse. It is difficult for the traditional identification methods to effectively capture the sample feature information operated by the confusion method only based on the delayed database information. The research into the direction of malware detection is dedicated to surmounting the limitations of conventional detection methodologies, and delves deeply into the application of cutting-edge technologies such as data visualization, machine learning, and hybrid detection within the realm of malware detection. Through these investigations, our goal is to construct a detection system that is both more precise and efficient, capable of addressing the ever-evolving threats to cybersecurity. Pursuing research in this direction is not only vital for enhancing network security defenses and safeguarding user data, but it will also foster the advancement of related state-of-the-art technologies and further mitigate the economic and societal repercussions of malware attacks. In light of this issue, this paper proposes the Image-based Malware Classification with Multi-scale Kernels (IMCMK), a Convolutional Neural Network (CNN) architecture using multi-scale convolution kernels mixing action to improve malware variants detection capabilities. First, we propose the Multi-scale Kernels (MK) block combining deep large kernel convolution and standard small kernel convolution with shortcuts to improve the accuracy. Furthermore, we propose Multi-scale Kernel Fusion (MKF) to reduce the number of parameters that come with the large kernels. The improved Squeeze-and-Excitation (SE) block can obtain the correlation between different channels to further increase the model performance. Experimental results show that IMCMK outperforms the state-of-the-art methods in malware family classification accuracy, which has achieved 99.25 %.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 50 条
  • [21] Image-based wheat grain classification using convolutional neural network
    Lingwal, Surabhi
    Bhatia, Komal Kumar
    Tomer, Manjeet Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35441 - 35465
  • [22] Multi-scale face detection based on convolutional neural network
    Luo, Mingzhu
    Xiao, Yewei
    Zhou, Yan
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1752 - 1757
  • [23] An Attention Mechanism for Combination of CNN and VAE for Image-Based Malware Classification
    Van Dao, Tuan
    Sato, Hiroshi
    Kubo, Masao
    IEEE ACCESS, 2022, 10 : 85127 - 85136
  • [24] Designing Deep Convolutional Neural Networks using a Genetic Algorithm for Image-based Malware Classification
    Paardekooper, Cornelius
    Noman, Nasimul
    Chiong, Raymond
    Varadharajan, Vijay
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [25] A lightweight convolutional neural network (CNN) model for diatom classification: DiatomNet
    Gunduz, Huseyin
    Gunal, Serkan
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [26] Multi-Scale Convolutional Neural Network Ensemble for Multi-Class Arrhythmia Classification
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (08) : 3802 - 3812
  • [27] Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms
    Niu, Jing
    Li, Hua
    Zhang, Chen
    Li, Dengao
    MEDICAL PHYSICS, 2021, 48 (07) : 3878 - 3892
  • [28] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [29] Image Segmentation-Based Multi-Focus Image Fusion Through Multi-Scale Convolutional Neural Network
    Du, Chaoben
    Gao, Shesheng
    IEEE ACCESS, 2017, 5 : 15750 - 15761
  • [30] Automated Classification of Massive Spectra Based on Enhanced Multi-Scale Coded Convolutional Neural Network
    Jiang, Bin
    Wei, Donglai
    Liu, Jiazhen
    Wang, Shuting
    Cheng, Liyun
    Wang, Zihao
    Qu, Meixia
    UNIVERSE, 2020, 6 (04)