Inferring multi-slice spatially resolved gene expression from H&E-stained histology images with STMCL

被引:0
作者
Shi, Zhiceng [1 ]
Zhu, Fangfang [2 ]
Min, Wenwen [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Open Univ, Sch Hlth & Nursing, Kunming 650599, Yunnan, Peoples R China
关键词
Spatial transcriptomics; Multi-modal deep learning; Contrastive learning; Gene expression prediction; ARCHITECTURE;
D O I
10.1016/j.ymeth.2024.11.016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics has significantly advanced the measurement of spatial gene expression in the field of biology. However, the high cost of ST limits its application in large-scale studies. Using deep learning to predict spatial gene expression from H&E-stained histology images offers a more cost-effective alternative, but existing methods fail to fully leverage the multimodal information provided by Spatial transcriptomics and pathology images. In response, this paper proposes STMCL, a novel multimodal contrastive learning framework. STMCL integrates multimodal information, including histology images, gene expression features of spots, and their locations, to accurately infer spatial gene expression profiles. We tested four different types of multi-slice spatial transcriptomics datasets generated by the 10X Genomics platform. The results indicate that STMCL has advantages over baseline methods in predicting spatial gene expression profiles. Furthermore, STMCL is capable of capturing cancer-specific highly expressed genes and preserving gene expression patterns while maintaining the original spatial structure of gene expression. Our code is available at https://github.com/wenwenmin/STMCL.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 33 条
  • [1] Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems
    Alon, Shahar
    Goodwin, Daniel R.
    Sinha, Anubhav
    Wassie, Asmamaw T.
    Chen, Fei
    Daugharthy, Evan R.
    Bando, Yosuke
    Kajita, Atsushi
    Xue, Andrew G.
    Marrett, Karl
    Prior, Robert
    Cui, Yi
    Payne, Andrew C.
    Yao, Chun-Chen
    Suk, Ho-Jun
    Wang, Ru
    Yu, Chih-Chieh
    Tillberg, Paul
    Reginato, Paul
    Pak, Nikita
    Liu, Songlei
    Punthambaker, Sukanya
    Iyer, Eswar P. R.
    Kohman, Richie E.
    Miller, Jeremy A.
    Lein, Ed S.
    Lako, Ana
    Cullen, Nicole
    Rodig, Scott
    Helvie, Karla
    Abravanel, Daniel L.
    Wagle, Nikhil
    Johnson, Bruce E.
    Klughammer, Johanna
    Slyper, Michal
    Waldman, Julia
    Jane-Valbuena, Judit
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    Church, George M.
    Marblestone, Adam H.
    Boyden, Edward S.
    [J]. SCIENCE, 2021, 371 (6528) : 481 - +
  • [2] Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
    Chen, Ao
    Liao, Sha
    Cheng, Mengnan
    Ma, Kailong
    Wu, Liang
    Lai, Yiwei
    Qiu, Xiaojie
    Yang, Jin
    Xu, Jiangshan
    Hao, Shijie
    Wang, Xin
    Lu, Huifang
    Chen, Xi
    Liu, Xing
    Huang, Xin
    Li, Zhao
    Hong, Yan
    Jiang, Yujia
    Peng, Jian
    Liu, Shuai
    Shen, Mengzhe
    Liu, Chuanyu
    Li, Quanshui
    Yuan, Yue
    Wei, Xiaoyu
    Zheng, Huiwen
    Feng, Weimin
    Wang, Zhifeng
    Liu, Yang
    Wang, Zhaohui
    Yang, Yunzhi
    Xiang, Haitao
    Han, Lei
    Qin, Baoming
    Guo, Pengcheng
    Lai, Guangyao
    Munoz-Canoves, Pura
    Maxwell, Patrick H.
    Thiery, Jean Paul
    Wu, Qing-Feng
    Zhao, Fuxiang
    Chen, Bichao
    Li, Mei
    Dai, Xi
    Wang, Shuai
    Kuang, Haoyan
    Hui, Junhou
    Wang, Liqun
    Fei, Ji-Feng
    Wang, Ou
    [J]. CELL, 2022, 185 (10) : 1777 - +
  • [3] Chen T, 2020, PR MACH LEARN RES, V119
  • [4] Spatially resolved transcriptomics and beyond
    Crosetto, Nicola
    Bienko, Magda
    van Oudenaarden, Alexander
    [J]. NATURE REVIEWS GENETICS, 2015, 16 (01) : 57 - 66
  • [5] Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
    Dong, Kangning
    Zhang, Shihua
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Dosovitskiy A., 2021, PROC INT C LEARN REP, P1, DOI DOI 10.48550/ARXIV.2010.11929
  • [7] Integrating spatial gene expression and breast tumour morphology via deep learning
    He, Bryan
    Bergenstrahle, Ludvig
    Stenbeck, Linnea
    Abid, Abubakar
    Andersson, Alma
    Borg, Ake
    Maaskola, Jonas
    Lundeberg, Joakim
    Zou, James
    [J]. NATURE BIOMEDICAL ENGINEERING, 2020, 4 (08) : 827 - 834
  • [8] Momentum Contrast for Unsupervised Visual Representation Learning
    He, Kaiming
    Fan, Haoqi
    Wu, Yuxin
    Xie, Saining
    Girshick, Ross
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 9726 - 9735
  • [9] Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA
    Hu, Jian
    Coleman, Kyle
    Zhang, Daiwei
    Lee, Edward B.
    Kadara, Humam
    Wang, Linghua
    Li, Mingyao
    [J]. CELL SYSTEMS, 2023, 14 (05) : 404 - +
  • [10] High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis
    Janesick, Amanda
    Shelansky, Robert
    Gottscho, Andrew D.
    Wagner, Florian
    Williams, Stephen R.
    Rouault, Morgane
    Beliakoff, Ghezal
    Morrison, Carolyn A.
    Oliveira, Michelli F.
    Sicherman, Jordan T.
    Kohlway, Andrew
    Abousoud, Jawad
    Drennon, Tingsheng Yu
    Mohabbat, Seayar H.
    Taylor, Sarah E. B.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)