Classification of Citrus Crops using Satellite Multispectral Imagery and Deep Neural Network

被引:1
作者
Camara-Guerra, Alvaro [1 ]
Artyounian-Vieyra, Cloe [1 ]
Gonzalez-Cuellar, Eder [1 ]
Trevino-Escamilla, Adriana [1 ]
Salazar-Garibay, Adan [2 ]
Hernandez-Gutierrez, Andres [1 ]
机构
[1] Univ Monterrey, Sch Engn & Technol, San Pedro Garza Garcia, Mexico
[2] Agencia Espacial Mexicana, Mexican Space Agcy, Mexico City, DF, Mexico
来源
2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024 | 2024年
关键词
Deep Neural Networks; Satellite; Multispectral Images; Crops Classification; Remote Sensing;
D O I
10.1109/ICCAE59995.2024.10569452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a Deep Neural Network classifier for use in the identification of citrus fruit crops using satellite multispectral images. It aims at classifying pixels and regions in 4-band multispectral images acquired by the remote sensing satellite platform GeoSat-2, identifying each pixel or region as belonging either to bare soil, orange, mandarin or grapefruit trees or crops. The system relies on the reflectance responses coming from the blue, green, red, and near-infrared bands of previously labelled images. These reflectance responses together with derived data from them, such as the computation of the Difference Vegetation Index (DVI), the Normalised Difference Vegetation Index (NDVI), the Excess Green Index (ExGI), and statistic metrics of the 5-Nearest Neighbours to a testing pixel are used as features to train a multilayer deep neural network classifier. The trained classifier is then tested on multispectral images of other citrus crops, providing a pixel-wise classification accuracy of 90.92%, increasing this metric to 98.08% when further applying a voting-based conditional discriminator to classify crop regions.
引用
收藏
页码:351 / 356
页数:6
相关论文
共 17 条
[1]   A multi-objective neural network based method for cover crop identification from remote sensed data [J].
Cruz-Ramirez, M. ;
Hervas-Martinez, C. ;
Jurado-Exposito, M. ;
Lopez-Granados, F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (11) :10038-10048
[2]  
EOS Data Analytics, Refinado Pancromatico En Imagenes De Observacion Remota
[3]  
European Space Agency, GEOSAT-2 Instruments
[4]  
European Space Agency, GEOSAT-2
[5]  
GDAL, VRT-GDAL Virtual Format-GDAL documentation
[6]  
Gupta S., 2022, 2022 INT C ADV SMART, P1, DOI [10.1109/ASSIC55218.2022.10088297, DOI 10.1109/ASSIC55218.2022.10088297]
[7]  
Jawak S.D., 2013, Adv. Remote Sens, V2, P332, DOI [10.4236/ars.2013.24036, DOI 10.4236/ARS.2013.24036]
[8]  
Li D., 2023, 2023 11 INT C AGR GE, P1, DOI [10.1109/Agro-Geoinformatics59224.2023.10233574, DOI 10.1109/AGRO-GEOINFORMATICS59224.2023.10233574]
[9]   Fine crop classification in high resolution remote sensing based on deep learning [J].
Lu, Tingyu ;
Wan, Luhe ;
Wang, Lei .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
[10]   Verification of color vegetation indices for automated crop imaging applications [J].
Meyer, George E. ;
Neto, Joao Camargo .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2008, 63 (02) :282-293