Flavonoids are known to possess biological effects like anti-inflammatory, antibacterial, antioxidant, and antidiabetic properties. Similarly, silver nanoparticles (AgNPs) have been widely used in the biomedical industry for therapy and diagnostics for a long time. This study investigates the potential of naringenin functionalized silver nanoparticles (AgN NPs) as a potential wound healing agent. The synthesis of AgN NPs was carried out using the one-pot synthesis method in the alkaline pH. Naringenin is used as the capping and the reducing agent. The naringenin-capped AgNPs were synthesized in six different concentrations. The structural, morphological, and spectroscopic characterization for each sample was conducted. The size of the nanoparticles was studied using the dynamic light scattering (DLS) experiment and further confirmed using TEM. The crystalline structure was investigated using X-ray diffraction, and AgN NPs exhibited a fcc crystal structure. The FTIR confirmed the capping of naringenin on AgNPs. All samples were tested for antibacterial activity, and the results demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Also, AgN NPs exhibited dose-dependent anti-inflammatory, antioxidant, and antidiabetic properties. The wound healing potential of AgN NPs was evaluated using a scratch wound assay in L929 cell lines. After 24 h, the scratch area was significantly reduced in the AgN NPs-treated sample, indicating enhanced cell migration compared to naringenin. Hence, these findings suggest that AgN NPs may serve as a more promising wound-healing agent than naringenin.