Norm inflation for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Wang, Yuzhao [1 ]
Zine, Younes [2 ,3 ,4 ]
机构
[1] Univ Birmingham, Sch Math, Watson Bldg, Birmingham B15 2TT, England
[2] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Peter Guthrie, Edinburgh EH9 3FD, Scotland
[3] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg,Peter Guthrie, Edinburgh EH9 3FD, Scotland
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
ILL-POSEDNESS; SCHRODINGER-EQUATION; WELL-POSEDNESS; REGULARITY;
D O I
10.5802/crmath.566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study the ill-posedness problem for the derivative nonlinear Schr & ouml;dinger equation (DNLS) in the one-dimensional setting. More precisely, by using a ternary-quinary tree expansion of the Duhamel formula we prove norm inflation in Sobolev spaces below the (scaling) critical regularity for the gauged DNLS. This ill-posedness result is sharp since DNLS is known to be globally well-posed in L 2 (R) [16]. The main novelty of our approach is to control the derivative loss from the cubic nonlinearity by the quintic nonlinearity with carefully chosen initial data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle
    Kondo, Toshiki
    Okamoto, Mamoru
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (02):
  • [2] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [3] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99
  • [4] The Derivative Nonlinear Schrödinger Equation in Analytic Classes
    Zoran Grujić
    Henrik Kalisch
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) : 62 - 71
  • [5] On Darboux transformations for the derivative nonlinear Schrödinger equation
    Jonathan J. C. Nimmo
    Halis Yilmaz
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 278 - 293
  • [6] Soliton Resolution for the Derivative Nonlinear Schrödinger Equation
    Robert Jenkins
    Jiaqi Liu
    Peter Perry
    Catherine Sulem
    Communications in Mathematical Physics, 2018, 363 : 1003 - 1049
  • [7] On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation
    Luccas Campos
    Mykael Cardoso
    Journal of Dynamics and Differential Equations, 2022, 34 : 2347 - 2369
  • [8] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Mathematische Annalen, 2019, 374 : 1075 - 1138
  • [9] Birkhoff Normal Form for the Derivative Nonlinear Schr?dinger Equation
    Jian Jun LIU
    ActaMathematicaSinica,EnglishSeries, 2022, (01) : 249 - 262
  • [10] KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation
    Dong Feng Yan
    Guang Hua Shi
    Acta Mathematica Sinica, English Series, 2020, 36 : 153 - 170