共 46 条
[1]
Konecny J., McMahan H.B., Yu F.X., Richtarik P., Suresh A.T., Bacon D., Federated learning: Strategies for improving communication eficiency, (2016)
[2]
Yang Q., Liu Y., Chen T., Tong Y., Federated machine learning: Concept and applications, ACM Trans. Intell. Syst. Technol., 10, 2, pp. 1-19, (2019)
[3]
Xu C., Qu Y., Luan T.H., Eklund P.W., Xiang Y., Gao L., An eficient and reliable asynchronous federated learning scheme for smart public transportation, IEEE Trans. Veh. Technol., 72, 5, pp. 6584-6598, (2023)
[4]
Tan Y.N., Tinh V.P., Lam P.D., Nam N.H., Khoa T.A., A transfer learning approach to breast cancer classification in a federated learning framework, IEEE Access, 11, pp. 27462-27476, (2023)
[5]
McMahan H.B., Moore E., Ramage D., Arcas B.A.Y., Federated learning of deep networks using model averaging, (2016)
[6]
Sun Y., Ochiai H., Sakuma J., Attacking-distance-aware attack: Semi-targeted model poisoning on federated learning, IEEE Trans. Artif. Intell., 5, 2, pp. 925-939, (2024)
[7]
Wei K., Li J., Ding M., Ma C., Jeon Y.-S., Poor H.V., Covert model poisoning against federated learning: Algorithm design and optimization, IEEE Trans. Dependable Secure Comput., 21, 3, pp. 1196-1209, (2024)
[8]
Cao X., Gong N.Z., MPAF: Model poisoning attacks to federated learning based on fake clients, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3396-3404, (2022)
[9]
Wang Z., Ma J., Wang X., Hu J., Qin Z., Ren K., Threats to training: A survey of poisoning attacks and defenses on machine learning systems, ACM Comput. Surv., 55, 7, (2023)
[10]
Li X., Qu Z., Zhao S., Tang B., Lu Z., Liu Y., LoMar: A local defense against poisoning attack on federated learning, IEEE Trans. Dependable Secure Comput., 20, 1, pp. 437-450, (2023)